El genoma del virus de papiloma humano (VPH) codifica proteínas con actividad oncogénica, entre las que se encuentra la E7. Las características estructurales de la proteína E7 le confieren la capacidad de interactuar con una amplia gama de proteínas celulares, algunas de las cuales actúan como reguladores del ciclo celular y otras como factores de transcripción. A través de estas interacciones, la proteína E7 induce la progresión del ciclo celular de la fase de reposo (G1) a la de síntesis (S), la iniciación de la mitosis y la inhibición de la diferenciación celular; además, esta proteína genera inestabilidad cromosómica. La presente revisión tiene como finalidad describir las interacciones de la proteína E7 del VPH con diferentes proteínas celulares, así como su contribución al desarrollo del cáncer cervical.
Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J Clin Virol. 2005;32 Suppl 1:S16-24.
Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518-27.
Clifford GM, Gallus S, Herrero R, Muñoz N, Snijders PJ, Vaccarella S, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;9490:991-8.
Velázquez-Márquez N, Paredes-Tello MA, Pérez-Terrón H, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Prevalence of human papillomavirus genotypes in women from a rural zone of Puebla, Mexico. Int J Infec Dis. 2009;13(6):690-5.
Modis Y, Trus BL, Harrison SC. Atomic model of the papillomavirus capsid. EMBO J. 2002;21:4754-62.
Velázquez-Márquez N, Reyes-Leyva J, Vallejo-Ruiz V. Papel de oncogenes del virus del papiloma humano en la inducción de cáncer cervicouterino. En: Rocha-Gracia RC, Martínez-Laguna Y, Lozano-Zarain P, Editores. Mecanismos de patogenicidad e interacción parásito hospedero. Puebla, México: Publicación especial de la Benemérita Universidad Autónoma de Puebla; 2004. p277-92.
Boulet G, Horvath C, Broeck VD, Sahebali S, Bogers. Human papillomavirus: E6 and E7 oncogenes. IJBCB. 2007;39:2006-11.
Ueno T, Sasaki K, Yoshida S, Kajitani N, Satsuka A, Nakamura H, et al. Molecular mechanisms of hyperplasia induction by human papillomavirus E7. Oncogene. 2006;25:4155-64.
Hawley-Nelson P, Androphy EJ, Lowy DR, Schiller JT. The specific DNA recognition sequence of the bovine papillomavirus E2 protein is an E2-dependent enhancer. EMBO J. 1988;7(2):525-31.
Hirochika H, Hirochika R, Broker TR, Chow LT. Functional mapping of the human papillomavirus type 11 transcriptional enhancer and its interaction with the trans-acting E2 proteins. Genes Dev. 1988;2(1):54-67.
Medina–Martínez O, Vallejo V, Guido MC, García-Carrancá A. Ha-ras oncogene-induced transcription of human papillomavirus type 18 E6 and E7 oncogenes. Mol Carcinogen. 1997;19:83-90.
Barbosa MS, Edmonds C, Fisher C, Schiller JT, Lowy DR, Vousden KH. The region of the HPV E7 oncoprotein homologous to adenovirus E1a and SV40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. EMBO J. 1990;9(1):153-160.
Pahel G, Aulabaugh A, Short SA, Barnes JA, Painter GR, Ray P, et al. Structural and functional characterization of the HPV16 E7 protein expressed in bacteria. J Biol Chem. 1993;268:26018-25.
Dyson N, Guida P, McCall C, Harlow E. Adenovirus E1A makes two distinct contacts with the retinoblastoma protein. J Virol. 1992;66(7):4606-11.
Massimi P, Pim D, Banks L. Human papillomavirus type 16 E7 binds to the conserved carboxy-terminal region of the TATA box binding protein and this contributes to E7 transforming activity. J Gen Virol. 1997;78(Pt 10):2607-13.
McIntyre M, Frattini MG, Brossman SR, Laimins LA. Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J Virol. 1993;67:3142-50.
Alonso LG, Garcia-Alai MM, Nadra AD, Lapena AN, Almeida FL, Gualfetti P, et al. High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners. Biochemistry. 2002;41:10510-18.
Garcia-Alai MM, Alonso LG, Prat-Gay GD. The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein. Biochemistry. 2007;46:10405-12.
Lee JO, Russo AA, Pavletich NP. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature. 1998;391:859-65.
Attwooll C, Lazzerini-Denchi E, Helin K. The E2F family: specific functions and overlapping interests. EMBO J. 2004.23(24):4709-16.
Berezutskaya E, Bagchi S. The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J Biol Chem. 1997;272:30135-40.
Huh KW, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol. 2007;81:9737-47.
Wang J, Sampath A, Raychaudhuri P, Bagchi S. Both Rb and E7 are regulated by the ubiquitin proteasome pathway in HPV-containing cervical tumor cells. Oncogene. 2001;20:4740-49.
Ying H, Xiao ZXJ. Targeting retinoblastoma protein for degradation by proteasomes. Cell Cycle. 2006;5:506-8.
Gage JR, Meyers C, Wettstein FO. The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J Virol. 1990;64(2):723-30.
Genovese NJ, Banerjee NS, Broker TR, Chow LT. Casein kinase II motif-dependent phosphorylation of human papillomavirus E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol. 2008;82:4862-73.
McKendrick L, Milne D, Meek D. Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable. Mol Cell Biochem. 1999;191(1-2):187-99.
Bhawal UK, Sugiyama M, Nomura Y, Sawajiri M, Tsukinoki K, Ikeda MA, et al. High-risk human papillomavirus type 16 E7 oncogene associates with Cdc25A over-expression in oral squamous cell carcinoma. Virchows Arch. 2007;450(1):65-71.
Katich SC, Zerfass-Thome K, Hoffmann I. Regulation of the Cdc25A gene by the human papillomavirus Type 16 E7 oncogene. Oncogene. 2001;20:543-50.
Nguyen CL, Münger K. Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK” complexes. Virology. 2008;380:21-5.
He W, Staples D, Smith C, Fisher C. Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J Virol. 2003;77:10566-74.
Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 1997;11(16):2090-100.
Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Dürr P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996;13(11):2323-30.
Nguyen CL, Eichwald C, Nibert ML, Münger K. Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component γ-tubulin. J Virol. 2007;81:13533-43.
McLaughlin-Drubin ME, Huh KW, Münger K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol. 2008;32:8695-705.
Storre J, Schäfer A, Reichert N, Barbero JL, Hauser S, Eilers M, et al. Silencing of the meiotic genes SMC1b and STAG3 in somatic cells by E2F6. J Biol Chem. 2005;280(50):41380-6.
Antinore MJ, Birrer MJ, Patel D, Nader L, McCance DJ. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J. 1996;15:1950-60.
Thierry F, Spyrou G, Yaniv M, Howley P. Two AP1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. J Virol.1992;66:3740-8.
Villanueva R, Morales-Peza N, Castelán-Sánchez I, García-Villa E, Tapia R, Cid-Arregui A, et al. Heparin (GAG-hed) inhibits LCR activity of human papillomavirus type 18 by decreasing AP1 binding. BMC Cancer. 2006;6:1-15.
Yuan H, Ito S, Senga T, Hyodo T, Kiyono T, Kikkawa F, et al. Human papillomavirus type 16 oncoprotein E7 suppresses cadherin-mediated cell adhesion via ERK and AP-1 signaling. Int J Oncol. 2009; 35(2):309-14.
Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 2005;6:635-45.
Eisenman RN. Deconstructing myc. Genes Dev. 2001;15(16):2023-30.
Mai S, Mushinski JF. c-Myc-induced genomic instability. J Environ Pathol. Toxicol Oncol. 2003;22(3):179-99.
Liu X, Disbrow GL, Yuan H, Tomaic V, Schlegel R. Myc and human papillomavirus type 16 E7 genes cooperate to immortalize human keratinocytes. J Virol. 2007;81(22):12689-95.
Wang YW, Chang HS, Lin CH, Yu WC. HPV-18 E7 conjugates to c-Myc and mediates its transcriptional activity. Int J Biochem Cell Biol. 2007;39:402-12.
Juarez V, Pasolli A, Hellwig A, Garbi N, Arregui AC. Virus-Like Particles Harboring CCL19, IL-2 and HPV16 E7 Elicit Protective T Cell Responses in HLA-A2 Transgenic Mice. Open Virol J. 2012;6:270-6.
Rasoul-Amini S, Mansoorkhani MJ, Mohkam M, Ghoshoon MB, Ghasemi Y. Induction of antitumor immunity against cervical cancer by protein HPV-16 E7 in fusion with ricin B chain in tumor-bearing mice. Int J Gynecol Cancer. 2013; [Epub ahead of print].
Caballero JM, Garzón A, González-Cintado L, Kowalczyk W, Jimenez Torres I, Calderita G, et al. Chimeric infectious bursal disease virus-like particles as potent vaccines for eradication of established HPV-16 E7–dependent tumors. PLoS One. 2012;7(12):e52976.
White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD, Santha S, et al. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci USA. 2012;109(5):E260-267.