ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Alteraciones epigenéticas en la progresión del cáncer cervicouterino

Magdalena Ríos-Romero, Ana Guadalupe Soto-Valladares, Patricia Piña-Sánchez

Resumen


A pesar del empleo de los métodos de tamizaje como el Papanicolaou y la detección de virus del papiloma humano (VPH), el cáncer cervicouterino (CaCU) sigue siendo un problema de salud pública en México, ya que es la segunda causa de muerte por neoplasias malignas en mujeres. La infección por VPH de alto potencial oncogénico es el principal factor de riesgo para el desarrollo de lesiones precursoras y CaCU; sin embargo, no es suficiente, dado que se requiere de diversas alteraciones genéticas y epigenéticas para el desarrollo de la neoplasia y un gran número de ellas han sido descritas, incluso en algunos casos se ha sugerido su uso como biomarcadores en la progresión o predictivos de respuesta. A diferencia de lo que sucede con otros tipos de cáncer, como el de mama, en el CaCU no se ha establecido el uso de marcadores para su aplicación en la clínica. A diferencia de las alteraciones genéticas, las alteraciones epigenéticas son potencialmente reversibles y su caracterización no solo tiene potencial para el uso como biomarcadores, sino como blancos de nuevas terapias. En esta revisión se describen algunas de las alteraciones epigenéticas más características en el CaCU, con potencial uso para la clínica. 


Palabras clave


Cáncer cervicouterino; Epigenética; Biomarcadores

Texto completo:

PDF HTML PubMed HTML (English)

Referencias


http://www.inegi.org.mx/inegi/contenidos/espanolprensa/contenidos/estadisticas/2011/cancer11asp?s=inegi

 

Solomon D, Davey D, Kurman R, Moriarty A, O’Connor D, Prey M, et al. Forum Group Members; Bethesda 2001 Workshop. The 2001 Bethesda system: terminology for reporting results of cervical cytology. JAMA. 2002;287(16):2114-9.

 

Zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000;92(9):690-8.

 

Castellsagué X, Muñoz N. Chapter 3: Cofactors in human papillomavirus carcinogenesis-role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr. 2003;(31):20-8.

 

Hidalgo A, Baudis M, Petersen I, Arreola H, Piña P, Vázquez-Ortiz G, et al. Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma. BMC Cancer. 2005;5:77.

 

Lando M, Wilting SM, Snipstad K, Clancy T, Bierkens M, Aarnes EK, et al. Identification of eight candidate target genes of the recurrent 3p12-p14 loss in cervical cancer by integrative genomic profiling. J Pathol. 2013;230(1):59-69. 

 

Pérez-Plasencia C, Vázquez-Ortiz G, López-Romero R, Piña-Sanchez P, Moreno J, Salcedo M. Genome wide expression analysis in HPV16 cervical cancer: identification of altered metabolic pathways. Infect Agent Cancer. 2007;2:16.

 

Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683-92.

 

Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res. 2008 Jul 3;642(1-2):1-13. 

 

Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396-8.

 

Tazi, J, Bird A. Alternative chromatin structure at CpG islands. Cell. 1990;60:909-20.

 

Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427-40.

 

Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4(12):988-93.

 

Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68(1):1-11.

 

Wentzensen N, Sherman ME, Schiffman M, Wang SS. Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. Gynecol Oncol. 2009;112(2):293-9.

 

Teschendorff AE, Jones A, Fiegl H, Sargent A, Zhuang JJ, Kitchener HC, et al. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 2012;4(3):24.

 

Iliopoulos D, Oikonomou P, Messinis I, Tsezou A. Correlation of promoter hypermethylation in hTERT, DAPK and MGMT genes with cervical oncogenesis progression. Oncol Rep. 2009;22(1):199-204.

 

Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, et al. Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2003;2:24.

 

Chaopatchayakul P, Jearanaikoon P, Yuenyao P, Limpaiboon T. Aberrant DNA methylation of apoptotic signaling genes in patients responsive and nonresponsive to therapy for cervical carcinoma. Am J Obstet Gynecol. 2010;202(3):281.e1-9. 

 

Dodge JE, Okano M, Dick F, Tsujimoto N, Chen T, Wang S, et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem. 2005;280:17986-91.

 

Missaoui N, Hmissa S, Dante R, Frappart L. Global DNA methylation in precancerous and cancerous lesions of the uterine cervix. Asian Pac J Cancer Prev. 2010;11(6):1741-4.

 

Strahl B, Allis C. The language of covalent histone modifications. Nature. 2000;403(6765): 41-5.

 

Anton M, Horký M, Kuchtícková S, Vojtĕsek B, Bláha O. Immunohistochemical detection of acetylation and phosphorylation of histone H3 in cervical smears. Ceska Gynekol. 2004;69:3-6.

 

Zhang Z, Joh K, Yatsuki H, Zhao W, Soejima H, Higashimoto K, et al. Retinoic acid receptor beta2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Cancer Lett. 2007;247(2):318-27.

 

Bañuelos CA, Banáth JP, Kim JY, Aquino-Parsons C, Olive PL. gammaH2AX expression in tumors exposed to cisplatin and fractionated irradiation. Clin Cancer Res. 2009;15(10):3344-53. 

 

Kim T, Reitmair A. Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology. Int J Mol Sci. 2013;3:4934-68.

 

Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006; (11):857-66. 

 

Pereira PM, Marques JP, Soares AR, Carreto L, Santos MA. Zheng Z. MicroRNA expression variability in human cervical tissues. PLoS One. 2010;5(7):e11780.

 

Shen Y, Wang P, Li Y, Ye F, Wang F, Wan X, et al. miR-375 is upregulated in acquired paclitaxel resistance in cervical cancer. Br J Cancer. 2013;109(1):92-9. 

 

Shen SN, Wang LF, Jia YF, Hao YQ, Zhang L, Wang H. Upregulation of microRNA-224 is associated with aggressive progression and poor prognosis in human cervical cancer. Diagn Pathol. 2013;8:69. 

 

Zheng ZM, Wang X. Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta. 2011;1809(11-12):668-77.

 

Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;(43):4577-87.

 

Douc-Rasy S, Barrois M, Fogel S, Ahomadegbe JC, Stéhelin D, Coll J, et al. High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene. 1996;12(2):423-30.

 

Guo F, Li Y, Liu Y, Wang J, Li Y, Li G. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin (Shanghai). 2010;42(3):224-9.

 

Landerer E, Villegas J, Burzio VA, Oliveira L, Villota C, Lopez C, et al. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol. 2011;(4):297-305.

 

Gibb EA, Becker-Santos DD, Enfield KS, Guillaud M, Niekerk Dv, Matisic JP, et al. Aberrant expression of long noncoding RNAs in cervical intraepithelial neoplasia. Int J Gynecol Cancer. 2012; (9):1557-63. 

 

Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042-54.

 

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997-1003. 

 

Jones PA, Taylor SM, Wilson VL. Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res. 1983; 84:202-11. 

 

Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247-52.

 

Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M, et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 2006; 66(12):6361-9.

 

Coronel J, Cetina L, Pacheco I, Trejo-Becerril C, González-Fierro A, de la Cruz-Hernandez E, et al. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol. 2011; 28 Suppl 1:S540-546. 

 

Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri, et al. A targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 2011;13(1):132-42. 

 

Rom J, von Minckwitz G, Eiermann W, Sievert M, Schlehe B, Marmé F, et al. Oblimersen combined with docetaxel, adriamycin and cyclophosphamide as neo-adjuvant systemic treatment in primary breast cancer: final results of a multicentric phase I study. Ann Oncol. 2008;19(10):1698-705. 

 

Alvarez-Salas LM, Benítez-Hess ML, DiPaolo JA. Advances in the development of ribozymes and antisense oligodeoxynucleotides as antiviral agents for human papillomaviruses. Antivir Ther. 2003;8(4):265-78.


Enlaces refback

  • No hay ningún enlace refback.