ISSN: 0443-511
e-ISSN: 2448-5667
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Vía de señalización Wnt y cáncer cervicouterino

Moisés Ramos-Solano, Monserrat Álvarez-Zavala, Beatriz García-Castro, Luis Felipe Jave-Suárez, Adriana Aguilar-Lemarroy


El cáncer cervicouterino (CaCU) es una patología que se origina en el epitelio del cuello del útero, cuya principal causa de riesgo es la infección por el virus de papiloma humano (VPH). Sin embargo, dado que la infección por VPH per se no es suficiente para generar un proceso carcinogénico, se ha propuesto que alteraciones en la vía de señalización Wnt están involucradas en la carcinogénesis cervical. La familia Wnt está compuesta por 13 receptores y 19 ligandos, y se encuentra altamente conservada filogenéticamente, puesto que contribuye en diversos procesos biológicos, como la embriogénesis y la regeneración de tejidos. Adicionalmente, esta familia modula diferentes funciones celulares, como la proliferación celular, la diferenciación, la migración y la polaridad celular. En la presente revisión se describen las vías de señalización de Wnt, así como las alteraciones que han sido encontradas en miembros de esta familia en diferentes patologías cancerosas y especialmente en el cáncer cervicouterino.

Palabras clave

Receptores Wnt; Neoplasia intraepitelial cervical; Papiloma

Texto completo:

PDF HTML PubMed HTML (English)


Nusse R. Wnt signaling and stem cell control. Cell Res. 2008;18:523-7. doi:cr200847 [pii] 10.1038/cr.2008.47


Fuerer C, Nusse R, ten Berge D. Wnt signalling in development and disease. Max Delbrück Center for Molecular Medicine meeting on Wnt Signaling in Development and Disease. EMBO reports. 2008;9:134-8. doi:10.1038/sj.embor.7401159


Chien AJ, Moon RT. WNTS and WNT receptors as therapeutic tools and targets in human disease processes. Front Biosci. 2007;12:448-57. doi:2074 [pii] 


Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther. 2008;118:58-81. doi:10.1016/j.pharmthera.2008.01.004S0163-7258(08)00017-X [pii]


Staal FJ, Clevers HC. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol. 2005;5:21-30. doi:nri1529 [pii] 10.1038/nri1529 


Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 2012;31:2670-84. doi:10.1038/emboj.2012.146 emboj2012146 [pii] 


Sidow A. Diversification of the Wnt gene family on the ancestral lineage of vertebrates. Proceedings of the National Academy of Sciences. 1992;89:5098-102.


Nusse R. Wnt Signaling. Cold Spring Harbor Perspectives in Biology. 2012;4; a011163-a011163, doi:10.1101/cshperspect.a011163 


Gordon MD. Wnt Signaling: Multiple Pathways, Multiple Receptors, and Multiple Transcription Factors. Journal of Biological Chemistry. 2006;281:22429-33. doi:10.1074/jbc.R600015200


Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5:997-1014. doi:nrd2154 [pii] 10.1038/nrd2154 (2006).


Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci. 2022;115: 3977-8.


MacDonald BT, Tamai K, He X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Developmental Cell. 2009;17:9-26. doi:10.1016/j.devcel.2009.06.016 


Van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136:3205-14. doi:10.1242/dev.033910


De A. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochimica et Biophysica Sinica. 2011;43:745-56. doi:10.1093/abbs/gmr079


Niehrs C. The complex world of WNT receptor signalling. Nature Reviews Molecular Cell Biology. 2012;13:767-9. doi:10.1038/nrm3470 


Katoh M. WNT Signaling Pathway and Stem Cell Signaling Network. Clinical Cancer Research. 2007;13:4042-5. doi:10.1158/1078-0432.ccr-06-2316 


Kokolus K, Nemeth MJ. Non-canonical Wnt signaling pathways in hematopoiesis. Immunol Res. 2010;46:155-64. doi:10.1007/s12026-009-8116-7


Rao TP, Kuhl M. An Updated Overview on Wnt Signaling Pathways: A Prelude for More. Circulation Research. 2010;106:1798-806. doi:10.1161/circresaha.110.219840


Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99-109.


Clements WM, Lowy AM, Groden J. Adenomatous Polyposis Coli/β-Catenin Interaction and Downstream Targets: Altered Gene Expression in Gastrointestinal Tumors. Clinical Colorectal Cancer. 2003;3:113-20. doi: 


He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a Target of the APC Pathway. Science. 1998;281:1509-12. doi:10.1126/science.281.5382.1509 


Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences. 1999;96:5522-7. doi:10.1073/pnas.96.10.5522


Tetsu O, McCormick F. [beta]-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:4. doi:10.1038/18884


Polakis P. Wnt Signaling in Cancer. Cold Spring Harbor Perspectives in Biology. 2012;4:a008052-a008052. doi:10.1101/cshperspect.a008052 (2012).


Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell. 1995;81: 197-205.


Kongkham PN, Northcut PA, Croul SE, Smith CA, Taylor MD, Rutka JT. The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene. 2010;29:7. doi:10.1038.


Suzuki H, Toyota M, Carraway H, Gabrielson E, Ohmura T, Fujikane T, et al. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. British Journal of Cancer. 2008;98:1147-56. doi:10.1038/sj.bjc.6604259


Kondratov AG, Kvasha SM, Stoliar LA, Romanenko AM, et al. Alterations of the WNT7A Gene in Clear Cell Renal Cell Carcinomas. PLoS ONE. 2012;7: e47012. doi:10.1371/journal.pone.0047012


Sercan Z, Pehlivan M, Sercan HO. Expression profile of WNT, FZD and sFRP genes in human hematopoietic cells. Leukemia Research. 2010;34:946-9. doi:


Ochoa-Hernández AB, Ramos-Solano M, Meza-Canales ID, García-Castro B, Rosales-Reynoso MA, Rosales-Aviña JA, et al. Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation. BMC Cancer. 2012;12:60. doi:10.1186/1471-2407-12-60


Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J. Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ. 1997;8:1349-58.


Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol. 1994;14(9):6278-86.


Üren A, Fallen S, Yuan H, Usubutun A, Kucukali T, Schlegel R, et al. Activation of the Canonical Wnt Pathway during Genital Keratinocyte Transformation: A Model for Cervical Cancer Progression. Cancer Research. 2005;65:6199-206. doi:10.1158/0008-5472.can-05-0455


Bulut, G. Fallen S, Beauchamp EM, Drebing LE, Sun J, Berry DL, et al. Beta-Catenin Accelerates Human Papilloma Virus Type-16 Mediated Cervical Carcinogenesis in Transgenic Mice. PLoS ONE. 2011;6:e27243. doi:10.1371/journal.pone.0027243


Bonilla-Delgado, J. Bulut G, Liu X, Cortlores-Maldonado C -aés-Malagón EM, Schlegel R, Flores-Maldonado C, et al. The E6 Oncoprotein from HPV16 Enhances the Canonical Wnt/β-Catenin Pathway in Skin Epidermis In Vivo. Molecular Cancer Research 10, 250-258, doi:10.1158/1541-7786.mcr-11-0287 (2012).


Fragoso-Ontiveros, V. et al. Gene expression profiles induced by E6 from non-European HPV18 variants reveals a differential activation on cellular processes driving to carcinogenesis. Virology 432, 81-90, doi: (2012).


Carmon KS, Loose DS. Secreted Frizzled-Related Protein 4 Regulates Two Wnt7a Signaling Pathways and Inhibits Proliferation in Endometrial Cancer Cells. Molecular Cancer Research. 2008;6:1017-28. doi:10.1158/1541-7786.mcr-08-0039 


George SJ. Wnt Pathway: A New Role in Regulation of Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28:400-2. doi:10.1161/atvbaha.107.160952


Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AMC. Transcriptional Activation of Cyclooxygenase-2in Wnt-1-transformed Mouse Mammary Epithelial Cells. Cancer Research. 1999;59:1572-7.


Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646-74.


Zur Hausen H. Human papillomavirus and cervical cancer. The Indian Journal of Medical Research. 2009;130:209.

Enlaces refback

  • No hay ningún enlace refback.