Resumen
El cáncer de mama representa un gran reto por el contexto de género, su “look”, el contexto social y cultural, así como la probabilidad de que la detección oportuna sea de fácil acceso. Si bien en la actualidad contamos con pruebas de imagen para su detección, los nuevos y numerosos casos detectados tanto en mujeres jóvenes como en etapas avanzadas de la enfermedad, cuando no hay más que ofrecer que cuidados paliativos, abren oportunidad para desarrollar nuevos y prometedores sistemas de detección. Tratando de buscar soluciones al proceso organizativo de las células tumorales y adaptarlas para su detección oportuna, la biomimesis abre la oportunidad para nuevos enfoques no invasivos y desarrollos innovadores. En la actualidad, la detección de compuestos orgánicos volátiles (llamado también volatoloma), emitidos por las células tumorales mediante narices biológicas y narices con inteligencia artificial, podrían representar una realidad para la detección oportuna del cáncer y otras enfermedades. Es posible que una prueba de detección oportuna para las enfermedades incluyendo al cáncer esté pronta.
Abstract
Breast cancer represents a great challenge due to the context of gender, social and cultural aspects, as well as of the possibility of making accessible early detection methods. Currently, detection mostly relies on image tests (invasive procedures). However, due to new and numerous cases detected in young women, and detected in such advanced stages that only palliative care may be offered, there is opportunity to develop new, innovative and promising detection tests. In order to find solutions to the organizational process of tumor cells, and adapt them for early detection, biomimesis eases the development of new non-invasive approaches and innovative designs. Nowadays, the volatile organic compounds detection (also called volatolome) emitted by tumoral cells can be detected with the use of biological and/or artificial intelligent noses. This approach may represent a real opportunity for the early detection of cancer and several pathologies. There is no doubt that novel test for early detection of different diseases will be soon reality.
Hyuna-Sung H, Siegel RL, Torre LA, Pearson-Stuttard J, Islami F, Fedewa SA, et. al. Global Patterns in Excess Body Weight and the Associated Cancer Burden. Cancer J Clin. 2019;69:88–112. doi: 10.3322/caac.21499.
González-Robledo LM, González-Robledo MC, Nigenda G, López-Carrillo L. Acciones gubernamentales para la detección temprana del cáncer de mama en América Latina. Retos a futuro. Salud Pública de México. 2010;52:533-543.
Wang L. Early Diagnosis of breast cancer. Sensors. 2017;14:1572. doi: 10.3390/s17071572.
Løberg M, Lousdal ML, Bretthauer M, Kalager M. Benefits and harms of mammography screening. Breast Cancer Res. 2015;17(1):63. doi: 10.1186/s13058-015- 0525-z.
Castells X, Roman M, Romero A, Blanch J, Zubizarreta R, Ascunce N, et al. Breast cancer detection risk in screening mammography after a false-positive result. Cancer Epidemiol. 2013;37(1):85-90. doi: 10.1016/j.canep.2012.10.004.
Dabbous FM, Dolecek TA, Berbaum ML, Friedewald SM, Summerfelt WT, Hoskins K, et al. Impact of a false-positive screening mammogram on subsequent screening behavior and stage at breast cancer diagnosis. Cancer Epidemiol and Prevent Biomarkers. 2017;26(3):397-403. doi: 10.1158/1055-9965.EPI-16-0524.
Morris E, Feig SA, Drexler M, Lehman C. Implications of overdiagnosis: impact on screening mammography practices. Population Health Manag. 2015;18(S1):S-3. doi: 10.1089/pop.2015.29023.mor.
Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, et al. Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. The J Mol Diagn. 2012;14(5):467-475. doi: 10.1016/j.jmoldx.2012.03.006.
Lips EH, Michaut M, Hoogstraat M, Mulder L, Besselink NJ, Koudijs MJ, et al. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res. 2015;17(1):134. https://doi.org/10.1186/s13058-015-0642-8.
Kumar R, Sharma A, Tiwari RK. Application of microarray in breast cancer: An overview. J Pharm and Bioallied Scie. 2012;4(1):21. doi: 10.4103/0975-7406.92726.
Provenzano E, Ulaner GA, Chin S. Molecular Classification of Breast Cancer. PET Clinics. 2018;13(3):325-338. doi: 10.1016/j.cpet.2018.02.004.
Baldassarre G, Belletti B. Molecular biology of breast tumors and prognosis. F1000Research. 2016;5:F1000 Faculty Rev-711. doi: 10.12688/f1000research.8158.1.
Gunther UL. Metabolomics biomarkers for breast cancer. Pathobiol. 2015;82(3-4):153-65. doi: 10.1159/000 430844 .
Barash O, Haick H. Exhaled Volatile Organic Compounds as Noninvasive Markers in Breast Cancer. En: Omics Approaches in Breast Cancer. New Delhi: Springer; 2014. Disponible en: https://doi.org/10.1007/978-81-322- 0843-3_23.
Hadi NI, Jamal Q, Iqbal A, Shaikh F, Somroo S, Musharraf SG. Serum Metabolomic Profiles for Breast Cancer Diagnosis, Grading and Staging by Gas Chromatography-Mass Spectrometry. Scientific Reports. 2017:7(1):1715. doi: 10.1038/s41598-017-01924-9.
Jové M, Collado R, Quiles JL, Ramírez-Tortosa MC, Sol J, Ruiz-Sanjuan M, et al. A plasma metabolomic signature discloses human breast cancer. Oncotarget. 2017;8(12):19522. doi: 10.18632/oncotarget.14521.
Zhang AH, Sun H, Qiu S, Wang XJ. Metabolomics in noninvasive breast cancer. Clin Chi Acta. 2013;424:3-7. doi: 10.1016/j.cca.2013.05.003.
Denkert C, Bucher E, Hilvo M, Salek R, Orešič M, Griffin J, et al. Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med. 2012;4(4):37. Disponible en: https:// doi.org/10.1186/gm336.
Silva CL, Passos M, Câmara JS. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers-a powerful strategy for breast cancer diagnosis. Talanta. 2012;89:360-368. doi: 10.1016/j.talanta. 2011.
Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150(3):257-26. doi: 10.1093/jb/ mvr090.
Broza YY, Zuri L, Haick H. Combined volatolomics for monitoring of human body chemistry. Scientific Reports. 2014;4:4611. doi: https://doi.org/10.1038/srep 04611.
McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early-and late-stage lung and breast cancers. Integrative Cancer Ther. 2006;5(1):30-39. doi: 10.1177/1534735405285096.
Gordon RT, Schatz CB, Myers LJ, Kosty M, Gonczy C, Kroener J, et al. The use of canines in the detection of human cancers. J Altern Complement Med 2008;14(1):61- 67. doi: 10.1089/acm.2006.6408.
Williams H, Pembroke A. Sniffer dogs in the melanoma clinic? The Lancet. 1989;333(8640):734. doi: 10.1016/ s0140-6736(89)92257-5.
Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H. Detection of cancer through exhaled breath: a systematic review. Oncotarget. 2015;6(36):38643. doi: 10.18632/oncotarget.5938.
Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43(5):1423- 1449. doi: 10.1039/c3cs60329f.
Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103(4):542. doi: 10.1038/sj.bjc.6605810.
Budczies J, Denkert C, Müller BM, Brockmöller SF, Klauschen F, Györffy B, et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue–a GC-TOFMS based metabolomics study. BMC Genomics. 2012;13(1):334. doi: https://doi. org/10.1186/1471-2164-13-334.
Wang C, Sun B, Guo L, Wang X, Ke C, Liu S, et al. Volatile organic metabolites identify patients with breast cancer, cyclomastopathy and mammary gland fibroma. Scientific Reports. 2014;4:5383. doi: 10.1038/ srep05383.
Xu Y, Lee H, Hu Y, Huang J, Kim S, Yun M. Detection and identification of breast cancer volatile organic compounds biomarkers using highly-sensitive single nanowire array on a chip. J Biomed Nanotechnol. 2013;9(7):1164- 1172. doi: 10.1166/jbn.2013.1651.
Nakhleh MK, Amal H, Jeries R, Broza YY, Aboud M, Gharra A, et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS nano. 2016;11(1):112-125. doi: https://doi.org/10.1021/acsnano.6b04930.
Phillips M, Cataneo RN, Lebauer C, Mundada M, Saunders C. Breath mass ion biomarkers of breast cancer. J Breath Res. 2017;11(1):016004. doi: 10.1088/1752- 7163/aa549b.
Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res 2010;4(2):026003. doi: 10.1088/1752-7155/4/2/026003.
Prasad SN, Houserkov D, Campbell J. Breast imaging using 3D electrical impedence tomography. Biomed Pap Med Fac Uni Palacky Olumouc. 2008;152(1):151-154.
Preece AW, Craddock I, Shere M, Jones L, Winton HL. MARIA M4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection. J Med Imaging. 2016;3(3):033502. doi: 10.1117/1. JMI.3.3.033502.