ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

El efecto de la microbiota sobre la fisiología de las barreras hematotisulares / Effect of microbiota on the physiology of blood-tissue barriers

Nohemí García-Esquivel, Lorena González-López, Iliana Patricia Vega-Campos, Ramona Armida Medina-Barragán, María de Jesús Medina-Sánchez, Daniela Lizbeth Salas-Medina, Ana Beatriz Montero-Castillo, María Elena Rivera-Pérez, Wendy Guadalupe Lomelí-Miramontes, Pablo Benito Bautista-García

Resumen


Resumen

Las uniones estrechas (UE) son estructuras altamente complejas que se localizan en la porción más apical de la membrana basolateral y están compuestas por una serie de proteínas, como claudinas, ocludinas y proteínas de la familia ZO. Las UE restringen el paso de sustancias potencialmente dañinas o microorganismos a lo largo del espacio paracelular, y participan de manera importante en procesos de mecanotransducción y señalización intercelular. Aunque la ultraestructura de las UE les permiten funcionar como una barrera en varios tejidos, como en la barrera hematoencefálica y la barrera hematotesticular, estas son propensas a cambios en su composición, lo cual podría disminuir sus características de permeabilidad. En este sentido, se ha demostrado que ciertos microorganismos enteropatógenos son capaces de desensamblar o modificar las propiedades de permeabilidad de las UE en las barreras hematotisulares. En particular, se ha estudiado cómo la microbiota contribuye a la formación, la función y el mantenimiento de las UE en varios nichos inmunitariamente privilegiados, tales como el tracto gastrointestinal, el sistema nervioso central y los testículos. Por lo tanto, resulta primordial comprender los mecanismos fisiológicos por los cuales la microbiota puede modificar la función de las barreras hematotisulares, con el objetivo de diseñar nuevas estrategias terapéuticas que mejoren los efectos dañinos de varias enfermedades sobre nichos inmunitariamente privilegiados en el humano.

Abstract

The tight-junction (TJ) is a highly complex structure that is located in the most apical portion of the basolateral membrane, and is composed of series of proteins, such as; claudins, occludins and proteins of the ZO family.  The TJ restricts the passage of potentially harmful substances or microorganisms through the paracellular space and participates importantly in the mecanotransduction and intercellular signaling processes. Although the complex structure of the TJ, allowing it to function as a barrier in various tissues such as the brain-blood-barrier and testicular-blood-barrier, these barriers are prone to changes decreasing its permeability features.  The contribution of microbiota in the formation, function and maintenance of TJs in various immunologically privileged niches such as, the gastrointestinal tract, the central nervous system and the testicles, has been recently studied. Nevertheless, it has been demonstrated that certain pathogenic microorganisms are able to disassemble or modify the permeability of the TJs in epithelial-blood barrier. Thereby, it is central to understand the physiological mechanisms of how microbiota could modify the function of the epithelial blood barriers in order to design new therapeutic strategies to ameliorate the harmful effects of many human diseases.


Palabras clave


Microbiota; Uniones Estrechas; Ácidos Grasos Volátiles / Microbiota; Tight Junctions; Fatty Acids, Volatiles

Texto completo:

PDF HTML

Referencias


  1. Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017 Sep;11(9):821-834. Two: 10.1080/17474124.2017.1343143.
  2. Hooper LV, Gordon GI. Commensal host-bacterial relationships in the Well. Science 2001, 292: 1115-8.
  3. Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017 Jan 6;18(1):2. Two: 10.1186/s12865-016-0187.
  4. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015 Aug 7;21(29):8787-803. Two: 10.3748/wjg.v21.i29.8787.
  5. Of Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014 Dec;36:157-65. Two: 10.1016/j. semcdb. 2014.08.011.
  6. Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci. 2012 Jul;1258:9-18. Two: 10.1111/j .1749-6632.2012.06613.x.
  7. González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003 Jan;81(1):1-44. PMID: 12475568.
  8. Greenwood-Of Meerveld B, Johnson AC, Grundy D. Gastrointestinal Physiology and Function. Handb Exp Pharmacol. 2017;239:1-16. Two: 10.1007/164_2016_118. Greenwood-Of Meerveld B, Johnson AC, Grundy D. Gastrointestinal Physiology and Function. Handb Exp Pharmacol. 2017;239:1-16. Two: 10.1007/164_2016_118.
  9. Hand TW, Vujkovic-Cvijin I, Ridaura Ic Belkaid Y. Linking the Microbiota, Chronic Disease, and the Immune System. Trends Endocrinol Metab. 2016 Dec;27(12):831-843. Two: 10.1016/j. TEM. 2016.08.003.
  10. Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol. 2018 Jan 2;10(1). pii: a029314. Two: 10.1101/cshperspect.a029314.
  11. Takiishi T, Fenero CIM, Camera Us. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017 Oct 2;5(4): and1373208. Two: 10.1080/21688370.2017.1373208.
  12. Shortt C, Hasselwander The Marvin A, Nauta A, Fernández EN, Putz P, Rowland I, Swann J, Turkish J Vermeiren J, Antoine JM. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr. 2018 Feb;57(1):25-49. Two: 10.1007/s00394-017-1546-4.
  13. He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Cry Rev Microbiol. 2017 Feb;43(1):81-95. Two: 10.1080/1040841X.2016.1176988.
  14. Quigley EMM. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2017 Oct 17;17(12):94. Two: 10.1007/s11910-017-0802-6.
  15. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018 Feb;57(1):1-24. Two: 10.1007/s00394-017-1445-8.
  16. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–16.
  17. Ewaschuk JB, Diaz H, Meddings L Diederichs B, Dmytrash A, Backer J, Looijer-From Long M, Madsen KL. Secreted bioactive factors from Bifidobacterium Children enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1025–34.
  18. Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, Roy NC. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10:316. doi.org/10.1186/1471-2180-10-316
  19. Karczewski J, Troost FJ, Konings I, Covers J, Kleerebezem M, Brummer RJ, Wells JM. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol. 2010;298:G851–9.
  20. Qin H, Zhang Z, Hang X, Jiang Y. L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol. 2009;9:63.
  21. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Rep. 2016 Jun 21;15(12):2809-24. Two: 10.1016/j. celrep. 2016.05.047.
  22. Llewellyn A, Foey A. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients. 2017 Oct 23;9(10). pii: E1156. Two: 10.3390/nu9101156.
  23. Alvarez CS, Bay J, Bosch M, Giménez R, Baldomà L. Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells. Front Microbiol. 2016 Dec 15;7:1981. Two: 10.3389/fmicb.2016.01981.
  24. Keaney J, Campbell M.. The dynamic blood-brain barrier. FEBS J. 2015 Nov;282(21):4067-79. Two: 10.1111/febs.13412.
  25. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a020412. Two: 10.1101/cshperspect.a020412.
  26. Coureuil M, Lécuyer H Ver S, Nassif X.. A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol. 2017 Mar;15(3):149-159. Two: 10.1038/nrmicro.2016.178.
  27. Bailey V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, To´th M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulya´s B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, P S. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl With 2014;6:263ra158. DOI: 10.1126/scitranslmed.300975953.
  28. Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA. Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp Biol With (Maywood). 2018 Jan;243(2):159-165. Two: 10.1177/1535370217743766.
  29. Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. Biochim Biophys Biophys Act Biomembr. 2018 Jan;1860(1):141-153. Two: 10.1016/j. bbamem. 2017.04.020.
  30. Curmudgeon DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev. 2015 Oct;36(5):564-91. Two: 10.1210/er.2014-1101.
  31. ToAsmakh M, Stukenborg JB, Red A, Anuar F, Strand ML, Hedin L, P S, South O. The gut microbiota and developmental programming of the testis in mice. PLoS One. 2014 Aug 13;9(8): and103809. Two: 10.1371/journal.pone.0103809.
  32. Sánchez Almaraz R, Martín Fuentes M, Palma Milla S, López Plaza B, Bermejo López LM, Gómez Candela C. Fiber-type indication among different pathologies. Nutr Hosp. 2015 Jun 1; 31 (6): 2372-83. Two: 10.3305/NH. 2015.31.6.9023.
  33. Fuller S, Beck E, Salman H, Tapsell L. New Horizons for the Study of Dietary Fiber and Health: A Review. Plant Foods Hum Nutr. 2016 Mar;71(1):1-12. Two: 10.1007/s11130-016-0529-6.
  34. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015 Apr 14;7(4):2839-49. Two: 10.3390/nu7042839.
  35. Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Act signaling pathway. PLoS One. 2017 Jun 27;12(6): and0179586. Two: 10.1371/journal.pone.0179586.


Enlaces refback

  • No hay ningún enlace refback.