Resumen
Introducción: La sepsis es una disfunción orgánica potencialmente mortal causada por una respuesta no regulada del huésped ante una infección. El manejo incluye tratamiento antibiótico oportuno. Un tratamiento incorrecto influye negativamente en la sobrevida.
Objetivo: Describir el patrón de resistencia antimicrobiana de los principales microorganismos aislados en hemocultivos de pacientes con sepsis en un centro de referencia de la Ciudad de México.
Material y métodos: Estudio observacional, retrospectivo, descriptivo y transversal. Se analizaron datos de hemocultivos realizados en pacientes con sepsis durante el periodo del 1 de enero de 2015 al 31 de diciembre de 2018.
Resultados: Se identificaron 450 hemocultivos positivos. Escherichia coli (34.5%) y Staphylococcus aureus (24.4%) fueron las bacterias más frecuentemente aisladas. E. coli y Klebsiella pneumoniae mostraron una resistencia a las cefalosporinas de tercera generación del 75% y el 80%, respectivamente; K. pneumoniae mostró resistencia a los carbapenémicos en un 12.7%. Para Enterococcus faecium se reportó una resistencia a la vancomicina del 60%. La multirresistencia dentro del grupo de las bacterias no fermentadoras se reportó en un 88.1% para Acinetobacter baumannii y un 48.8% para Pseudomonas aeruginosa. La resistencia a la meticilina en S. aureus fue del 23.6%.
Conclusiones: Se halló una alta proporción de enterobacterias productoras de betalactamasas, así como una mayor proporción de bacterias no fermentadoras multirresistentes.
Abstract
Background: Sepsis is a life-threatening organic dysfunction caused by an unregulated host response to infection. Management includes a prompt antibiotic treatment. Incorrect treatment can negatively influence in survival.
Objective: To describe the pattern of antimicrobial resistance of the main isolated microorganisms in blood cultures of patients with sepsis in a reference center of Mexico City.
Material and methods: Observational, retrospective, descriptive, cross-sectional study. Data from blood cultures performed in patients diagnosed with sepsis were analyzed during the period from January 1, 2015, to December 31, 2018.
Results: 450 positive blood cultures were identified. Escherichia coli (34.5%) and Staphylococcus aureus (24.4%) were the most frequently isolated bacteria. E. coli and Klebsiella pneumoniae showed resistance to third generation cephalosporins of 75 and 80%, respectively. For K. pneumoniae it was reported resistance to carbapenems in 12.7%. For Enterococcus faecium it was reported a resistance to vancomycin in 60%. Multidrug resistance within the group of non-fermenting bacteria was reported in 88.1% for Acinetobacter baumannii and 48.8% in Pseudomonas aeruginosa. The resistance to methicillin in S. aureus was 23.6%.
Conclusions: A high proportion of beta-lactamase producing Enterobacteriaceae was observed, as well as a higher proportion of multidrug-resistant non-fermenting bacteria.
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-10. doi:https://doi.org/10.1001/jama.2016.0287
Xu J, Murphy SL, Kochanek KD, Bastian B, Arias E. Deaths:final data for 2016. National Vital Statistics Reports. 2018;Vol. 67, No. 5. Disponible en:https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_05.pdf
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky M, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303-10. doi:https://doi.org/10.1097/00003246-200107000-00002
Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis:for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):762-74. doi:https://doi.org/10.1001/jama.2016.0288
Rhodes A, Evans L, Alhazzani W, Levy M, Antonelli M, Ferrer R, et al. Surviving sepsis campaign:international guidelines for management of sepsis and septic shock:2016. Intensive Care Med. 2017;43:304-77. doi:https://doi.org/10.1097/CCM.0000000000002255
Norma Oficial Mexicana Nom-045-SSA2-2005, Para la vigilancia epidemiológica, prevención y control de las infecciones nosocomiales. México, DF:Diario Oficial de la Federación;20 de noviembre de 2009. Disponible en:http://www.dof.gob.mx/normasOficiales/3896/salud/salud.htm
Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo J, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136(5):1237-48. doi:https://doi.org/10.1378/chest.09-0087
Schumacher M, Wangler M, Wolkewitz M, Beyersmann J. Attributable mortality due to nosocomial infections. A simple and useful application of multistate models. Methods Inf Med. 2007;46(5):595-600.
Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-32. doi:https://doi.org/10.1016/j.ajic.2008.03.002
Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H, Ahmed M, Al-Mousa HH, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module. Am J Infect Control. 2014;42(9):942-56. doi:https://doi.org/10.1016/j.ajic.2014.05.029
Rice LB. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens:No ESKAPE. J Infect Dis. 2008;197(8):1079-81. doi:https://doi.org/10.1086/533452
Akova M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence. 2016;7(3):252-66.
Ventola CL. The antibiotic resistance crisis. Part 1:causes and threats. P T. 2015;40(4):277-83.
World Health Organization. Global Action Plan on Antimicrobial Resistance. World Health Organization. Geneva, Switzerland:WHO;2015. Disponible en:https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1
Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States 2013. Atlanta, Georgia:CDC;2013. Disponible en:https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
Casellas JM. Resistencia a los antibacterianos en América Latina:consecuencias para la infectología. Rev Panam Salud Publica. 2011;30(6):519-28.
Pan American Health Organization/Florida International University. Recommendations for Implementing Antimicrobial Stewardship Programs in Latin America and the Caribbean:Manual for Public Health Decision-Makers. Washington, D.C. PAHO/FIU;2018. Disponible en http://iris.paho.org/xmlui/handle/123456789/49645. Consultado el 10 de octubre de 2018.
Rodríguez-Noriega E. La evolución de la resistencia bacteriana en México, 1973-2013. Biomédica. 2014;34(Supl 1):181-90. https://doi.org/10.7705/biomedica.v34i0.2142
Amábile-Cuevas CF. Antibiotic resistance in Mexico:a brief overview of the current status and its causes. J Infect Dev Ctries. 2010;4(3):126-31. https://doi.org/10.3855/jidc.427
Ponce de León S. Programa Universitario de Investigación en Salud. Estado actual de la resistencia antimicrobiana en México. Reporte de los Hospitales de la Red del PUCRA:resistencia antimicrobiana y consumo de antibióticos. Ciudad de México:Universidad Nacional Autónoma de México;agosto de 2018. Disponible en:http://www.puis.unam.mx/slider_docs/reporte-ucradigital.pdf
Garza E, Morfín R, Mendoza S, Bocanegra P, Flores S, Rodriguez E. A snapshot of antimicrobial resistance in Mexico. Results from 47 centers from 20 states during a six-month period. PLoS One. 2019;14(3):e0209865. https://doi.org/10.1371/journal.pone.0209865
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske S. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria:an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.
Weiner LM, Webb A, Limbbago B, Dudeck M, Patel J, Kallen A, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections:summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-301.
Red de Vigilancia de la Resistencia a los Antimicrobianos, WHONET-Argentina. Mapa de resistencia antimicrobiana. Argentina:Red WHONET/Red SIREVA II;2017. Disponible en:http://antimicrobianos.com.ar/ATB/wp-content/uploads/2019/09/Mapas-de-Resistencia-Antimicrobiana-2017.-Red-WHONET-Argentina.-v2.pdf
Ponce-de León A, Rodriguez N, Morfin R, Cornejo D, Tinoco J, Martínez G, et al. Antimicrobial susceptibility of Gram-negative bacilli isolated from intra-abdominal and urinary-tract infections in Mexico from 2009 to 2015:results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). PLoS One. 2018;13(6):e019↭.
López-Martínez B, Alcázar-López V, Castellanos-Cruz MC, Franco-Hernández MI, Jimenez-Tapia Y, de León-Ham A, et al. Vigilancia institucional de la susceptibilidad antimicrobiana en patógenos de interés clínico. Bol Med Hosp Infant Mex. 2016;70(3):222-9.
The Center for Disease Dynamics Economics &Policy. ResistanceMap:Antibiotic resistance. 2018. Washington, DC:CDDEP;2018. Disponible en:https://resistancemap.cddep.org/. Consultado el 10 de octubre de 2018.
Rodríguez J, Terrazas J, Urdez E, Hernández E, Sánchez S. Resistencia a meticilina y susceptibilidad a vancomicina de Staphylococcus aureus aislados de sangre. Rev Med Inst Mex Seguro Soc. 2016;54(1):48-51.
Bocanegra P, Flores S, Camacho A, Morfin R, Villarreal L, Llaca J, et al. Phenotypic and genotypic characterization of vancomycin-resistant Enterococcus faecium clinical isolates from two hospitals in Mexico:first detection of VanB phenotype-vanA genotype. Enferm Infecc Microbiol Clin. 2015;34(7):415-21. https://doi.org/10.1016/j.eimc.2015.09.011.