ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Análisis de genómica comparativa: del virus SARS al SARS CoV 2. Similitudes y diferencias

Irma Berenice Mulato-Briones, Rosa María Ribas-Aparicio, Abraham Reyes-Gastellou, Ismael Olan Rodríguez-Ildefonso, Mauricio Salcedo-Vargas

Resumen


Introducción: en este momento somos testigos de un evento de magnitud mundial provocado por el brote pandémico derivado del nuevo virus SARS‑CoV‑2, lo cual requiere la generación de conocimiento. Por lo novedoso que resulta, muchas hipótesis y teorías son discutidas a diario respecto al origen de este nuevo virus. Varios estudios están enfocados en demostrar la similitud que el SARS‑CoV‑2 tiene con otros virus.

Objetivo: resaltar las diferencias del SARS‑CoV‑2 con otros virus SARS, a partir de un análisis de genómica comparativa, y determinar si se pueden atribuir a eventos de manipulación.

Material y métodos: se descargaron dos genomas completos de virus SARS, seis genomas completos de coronavirus humanos y 16 de coronavirus tipo SARS; fueron analizados en un estudio de genómica comparativa mediante la herramienta BLAST Ring Image Generator, y a continuación se examinaron las diferencias evidentes mediante el uso de los programas MAFFT y BLAST.

Resultados: se observó una alta identidad en fragmentos de los genomas tipo SARS de mamíferos con los genomas SARS‑CoV‑1 y SARS‑CoV‑2, y se identificaron tres diferencias nucleotídicas principales: en el gen ORF1ab región nsp3, en el gen S de reconocimiento al receptor y en el gen ORF8, con el cual se pueden separar las cepas tipo SARS de mamíferos en tipo SARS‑CoV‑1 y SARS‑CoV‑2.

Conclusión: el genoma completo de SARS‑CoV‑2 posee una alta identidad con cepas tipo SARS de mamíferos, por lo que su aparición más probable podría ser el resultado de la evolución natural.


Palabras clave


SARS CoV 2; Evolución Biológica; Pandemias; Coronavirus; Recombinación Genética

Texto completo:

PDF

Referencias


Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497 506.

 

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.

 

World Health Organization. Coronavirus disease (COVID-19) Pandemic [Internet]. [actualizado el 1 de abril de 2020; consultado el 1 de abril de 2020]. Disponible en https://www.who.int/emergencies/diseases/novel-coronavirus-2019

 

Pradhan P, Pandey A, Mishra A, Gupta P, Tripathi P, Menon M, et al. Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. bioRxiv. 2020;2020.01.30.927871

 

Andersen K, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS CoV 2. Nat Med. 2020. Disponible en https://www.nature.com/articles/s41591-020-0820-9

 

Simon-Loriere E, Holmes E. Why do RNA viruses recombine? Nat Rev Microbiol. 2011;9(8):617-26.

 

Bentley K, Evans D. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol. 2018;99(10):1345-56.

 

Fhang Z, Li W, Xu H, He Z. Identification Sus scrofa and Mus musculus as Potential Parasitifers of SARS-CoV-2 via Phylogenetic and Homologous Recombination Analysis. Journal of Cell Signaling. 2020.

 

Alikhan N, Petty N, Ben-Zakour N, Beatson S. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.

 

Katoh K, Misawa K, Kuma Ki, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-66.

 

Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10.

 

Hadfield J, Megill C, Bell S, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121-3.

 

Ahn D, Shin H, Kim M, Lee S, Kim H, Myoung J, et al. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol. 2020 Mar 28;30(3):313-24.

 

Anthony S, Johnson C, Greig D, Kramer S, Che X, Wells H, et al. Global patterns in coronavirus diversity. Virus Evol. 2017;3(1).

 

Ge X, Li J, Yang X, Chmura A, Zhu G, Epstein J, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535-8.

 

Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270 3.

 

Shereen M, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-8.

 

Grandi N, Tramontano E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Front Immunol. 2018;9:2039.

 

Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z, et al. Viral and host factors related to the clinical outcome of COVID-19 [published online ahead of print, 2020 May 20]. Nature. 2020;10.1038/s41586-020-2355-0

 

Baltrus DA. Exploring the costs of horizontal gene transfer. Trends Ecol Evol. 2013;28(8):489-95.

 

Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci. 2020. Disponible en https://www.pnas.org/content/117/17/9241

 

Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak [published correction appears in Curr Biol. 2020;30(8):1578]. Curr Biol. 2020;30(7):1346‐1351.e2

 

Lam T, Shum M, Zhu H, Tong Y, Ni X, Liao Y, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020;10.1038/s41586-020-2169-0

 

Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;doi: 10.1126/science.abb7015

 

Majorek K, Dunin-Horkawicz S, Steczkiewicz K, Muszewska A, Nowotny M, Ginalski K, et al. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucleic Acids Res. 2014;42(7):4160-79.

 

Moelling K, Broecker F, Russo G, Sunagawa S. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Front Microbiol. 2017;8:1745.

 

Muth D, Corman V, Roth H, Binger T, Dijkman R, Gottula L, et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep. 2018;8(1):15177.

 

Broecker F, Moelling K. What viruses tell us about evolution and immunity: beyond Darwin? Ann N Y Acad Sci. 2019;1447(1):53-68.

 

Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42.

 

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020. Disponible en https://www.nature.com/articles/s41586-020-2179-y

 

Hao P, Zhong W, Song S, Fan S, Li X. Is SARS-CoV-2 originated from laboratory? A rebuttal to the claim of formation via laboratory recombination. Emerg Microbes Infect. 2020;9(1):545-7.

 

Perez J. Wuhan nCoV-2019 SARS Coronaviruses Genomics Fractal Metastructures Evolution and Origins. 2020; doi: 10.20944/preprints202002.0025.v2

 

Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci. 2020;16(10):1678-85.


Enlaces refback

  • No hay ningún enlace refback.