Resumen
Introducción: la relación de los indicadores antropométricos y de composición corporal, con la evolución de la enfermedad renal en pacientes con diabetes tipo 2 sigue siendo controversial.
Objetivo: identificar la asociación de los indicadores de la enfermedad renal con indicadores de control metabólico y antropométricos en pacientes con diabetes tipo 2.
Material y métodos: se realizó un estudio transversal analítico en 395 pacientes del primer nivel de atención. La glucosa, hemoglobina glucosilada (HbA1c), perfil de lípidos y creatina se midió en ayuno. La enfermedad renal crónica (ERC) se consideró cuando la excreción de albumina urinaria (EAU) > 30 mg/g y con la reducción del nivel de la tasa de filtrado glomerular < 60 mL/min/1.73 m2, utilizando la ecuación CKD-EPI. Se midió el peso y circunferencia de cintura, así como la composición corporal a través de bioimpedancia.
Resultados: un 17% de la población presentó ERC con alteración de la EAU y 6.6% con una TFG reducida. Un mayor tiempo de diagnóstico de la enfermedad, mayor nivel de HbA1c y menor nivel grasa corporal se asoció a una EAU > 30 mg/g, (p < 0.05). La disminución de la TFG (< 60 mL/min/1.73 m2) se asoció con mayor edad, ser mujer, tener mayor circunferencia de cintura y menor porcentaje de grasa corporal (p < 0.05).
Conclusiones: un mayor nivel de circunferencia de cintura y menor porcentaje de grasa corporal se asocian a mayor evolución de la ERC en pacientes con diabetes tipo 2. El descontrol glucémico se identificó en pacientes con mayor excreción de albumina urinaria.
Abstract
Background: The relationship of anthropometric and body composition indicators with the evolution of kidney disease in patients with type 2 diabetes, is still inconsistent.
Objective: To identify the association of indicators of kidney disease with indicators of metabolic and anthropometric control in patients with type 2 diabetes.
Material and methods: An analytical cross-sectional study was carried out in 395 patients of the first level of care. The glucose, glycosylated hemoglobin (HbA1c), creatinine and lipid profile were measured. The kidney disease (CKD) was made when urinary albumin excretion (UAE) > 30 mg/g and with a reduction in the level of glomerular filtration rate < 60 mL/min/1.73 m2, using the CKD-formula. Weight and waist circumference were measured, as well as the body composition through bioimpedance.
Results: Seventeen percent of the population has a diagnosed with CKD with alteration of the UAE and 6.6% had a reduced GFR. A longer time of diagnosis of the diabetes, higher HbA1c level and body fat were associated with an UAE > 30 mg/g, (p < 0.05). The decline in GFR (< 60 mL/min/ 1.73 m2) was associated with older age, being a woman, greater waist circumference, and a higher percentage of body fat (p < 0.05).
Conclusions: A higher level of waist circumference and a lower percentage of body fat are associated with a greater evolution of chronic kidney disease in patients with type 2 diabetes. Glycemic uncontrol is identified in patients with high urinary albumin excretion.
Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. doi: 10.1016/j.diabres.2018.02.023
Rojas-Martínez R, Basto-Abreu A, Aguilar-Salinas CA, Zárate-Rojas E, Villalpando S, Barrientos-Gutiérrez T. [Prevalence of previously diagnosed diabetes mellitus in Mexico.]. Salud Publica Mex. 2018;60(3):224-32. doi: 10.21149/8566
Jepson C, Hsu JY, Fischer MJ, Kusek JW, Lash JP, Ricardo AC, et al. Incident Type 2 Diabetes Among Individuals With CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2019;73(1):72-81. doi: 10.1053/j.ajkd.2018.06.017
Dharmarajan SH, Bragg-Gresham JL, Morgenstern H, Gillespie BW, Li Y, Powe NR, et al. State-Level Awareness of Chronic Kidney Disease in the U.S. Am J Prev Med. 2017;53(3):300-7. doi: 10.1016/j.amepre.2017.02.015
Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032-45. doi: 10.2215/CJN.11491116
Doshi SM, Friedman AN. Diagnosis and Management of Type 2 Diabetic Kidney Disease. Clin J Am Soc Nephrol. 2017;12(8):1366-73. doi: 10.2215/CJN.11111016
Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018. doi: 10.1038/nrdp.2015.18
Silva-Junior GB, Bentes AC, Daher EF, Matos SM. Obesity and kidney disease. J Bras Nefrol. 2017;39(1):65-9. doi: 10.5935/0101-2800.20170011
Aguiar LK, Prado RR, Gazzinelli A, Malta DC. Factors associated with chronic kidney disease: epidemiological survey of the National Health Survey. Rev Bras Epidemiol. 2020;23:e200044. doi: 10.1590/1980-549720200044
Rivera-Dommarco J, Campos-Nonato I, Shamah T, Trejo-Valdivia B, Hernández-Barrera L, Barquera S. Obesity in Mexico, prevalence and trends in adults. Ensanut 2018-19. Salud Pública de México. 2020;62(6):682-92. doi: 10.21149/11630
Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19•2 million participants. Lancet. 2016;387(10026):1377-96. doi: 10.1016/S0140-6736(16)30054-X
Comini LO, de Oliveira LC, Borges LD, Dias HH, Batistelli CRS, da Silva LS, et al. Individual and Combined Components of Metabolic Syndrome with Chronic Kidney Disease in Individuals with Hypertension and/or Diabetes Mellitus Accompanied by Primary Health Care. Diabetes Metab Syndr Obes. 2020;13:71-80. doi: 10.2147/DMSO.S223929
Kittiskulnam P, Thokanit NS, Katavetin P, Susanthitaphong P, Srisawat N, Praditpornsilpa K, et al. The magnitude of obesity and metabolic syndrome among diabetic chronic kidney disease population: A nationwide study. PLoS One. 2018;13(5):e0196332. doi: 10.1371/journal.pone.0196332
Tziomalos K, Athyros VG. Diabetic Nephropathy: New Risk Factors and Improvements in Diagnosis. Rev Diabet Stud. 2015;12(1-2):110-8. doi: 10.1900/RDS.2015.12.110
Man REK, Gan ATL, Fenwick EK, Gupta P, Wong MYZ, Wong TY, et al. The Relationship between Generalized and Abdominal Obesity with Diabetic Kidney Disease in Type 2 Diabetes: A Multiethnic Asian Study and Meta-Analysis. Nutrients. 2018;10(11). doi: 10.3390/nu10111685
Madero M, Katz R, Murphy R, Newman A, Patel K, Ix J, et al. Comparison between Different Measures of Body Fat with Kidney Function Decline and Incident CKD. Clin J Am Soc Nephrol. 2017;12(6):893-903. doi: 10.2215/CJN.07010716
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. doi: 10.7326/0003-4819-150-9-200905050-00006
Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco AL, De Jong PE, et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. 2013;3(1):1-150. doi: 10.7326/0003-4819-158-11-201306040-00007
Habicht J-P. Estandarización de métodos epidemiológicos cuantitativos sobre el terreno. Boletín de la Oficina Sanitaria Panamericana. Washington, D.C.: Organización Panamericana de la Salud; 1974.
Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign, Illinois: Human Kinetics Books; 1988.
Ovalle-Luna OD, Jiménez-Martínez IA, Rascón-Pacheco RA, Gómez-Díaz RA, Valdez-González AL, Gamiochipi-Cano M, et al. [Prevalencia de complicaciones de la diabetes y comorbilidades asociadas en medicina familiar del Instituto Mexicano del Seguro Social]. Gac Med Mex. 2019;155(1):30-8. doi: 10.24875/GMM.18004486
Shikata K, Kodera R, Utsunomiya K, Koya D, Nishimura R, Miyamoto S, et al. Prevalence of albuminuria and renal dysfunction, and related clinical factors in Japanese patients with diabetes: The Japan Diabetes Complication and its Prevention prospective study 5. J Diabetes Investig. 2020;11(2):325-32. doi: 10.1111/jdi.13116
Cheema S, Maisonneuve P, Zirie M, Jayyousi A, Alrouh H, Abraham A, et al. Risk Factors for Microvascular Complications of Diabetes in a High-Risk Middle East Population. J Diabetes Res. 2018;2018:8964027. doi: 10.1155/2018/8964027
Prognosis Consortium (CKD-PC) (2019). Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ. 2019;364:k5301. doi: 10.1136/bmj.k5301
Zhang HS, An S, Ahn C, Park SK, Park B. Obesity measures at baseline, their trajectories over time, and the incidence of chronic kidney disease: A 14 year cohort study among Korean adults. Nutr Metab Cardiovasc Dis. 2020. doi: 10.1016/j.numecd.2020.10.021
Yang H, Young D, Gao J, Yuan Y, Shen M, Zhang Y, et al. Are blood lipids associated with microvascular complications among type 2 diabetes mellitus patients? A cross-sectional study in Shanghai, China. Lipids Health Dis. 2019;18(1):18. doi: 10.1186/s12944-019-0970-2
Tomas MC, Macisaac RJ, Jerums G, Weekes A, Moran J, Shaw JE, et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care. 2009;32(8):1497-502. doi: 10.2337/dc08-2186
Sabanayagam C, Liew G, Tai ES, Shankar A, Lim SC, Subramaniam T, et al. Relationship between glycated haemoglobin and microvascular complications: is there a natural cut-off point for the diagnosis of diabetes? Diabetologia. 2009;52(7):1279-89. doi: 10.1007/s00125-009-1360-5
Yasuno T, Maeda T, Tada K, Takahashi K, Ito K, Abe Y, et al. Effects of HbA1c on the Development and Progression of Chronic Kidney Disease in Elderly and Middle-Aged Japanese: Iki Epidemiological Study of Atherosclerosis and Chronic Kidney Disease (ISSA-CKD). Intern Med. 2020;59(2):175-80. doi: 10.2169/internalmedicine.3242-19.