Resumen
Introducción: el SARS-CoV-2 es un coronavirus que fue descrito por primera vez en diciembre de 2019 en Wuhan, China. Este virus causa una enfermedad que varía en un espectro de severidad que va desde casos asintomáticos hasta defunciones. Los casos más severos se asocian normalmente con algunas comorbilidades y con la edad del paciente. Sin embargo, existen pacientes que no son parte de estos grupos de riesgo y aun así desarrollan casos graves.
Objetivo: determinar la asociación entre las coinfecciones por SARS-CoV-2 y otros virus respiratorios y su desenlace clínico.
Material y métodos: se realizó RT-qPCR para determinar la presencia de 16 virus respiratorios en 103 casos confirmados de COVID-19. Se recolectaron datos demográficos y de comorbilidades, y se realizaron análisis estadísticos para determinar asociaciones con gravedad.
Resultados: el 13.6% de los casos (14/103) presentaron alguna coinfección, de estos, el 92% nunca requirió ingreso hospitalario, aun en aquellos casos en los que el paciente presentara comorbilidades y edad avanzada.
Conclusiones: estos resultados sugieren que la coinfección no está relacionada con un COVID-19 más grave y que, dependiendo del virus involucrado, incluso podría conducir a un mejor pronóstico. Estos hallazgos sientan las bases para nuevos estudios dirigidos a determinar el mecanismo biológico por el cual ocurre este fenómeno y a proponer las estrategias correspondientes para limitar la progresión a casos severos de COVID-19.
Abstract
Background: SARS-CoV-2 is a coronavirus described for the first time in China, in December 2019. This virus can cause a disease with a very variable spectrum that ranges from asymptomatic cases to deaths. The most severe cases are normally associated with comorbidities and with the age of the patient. However, there are patients who are not part of these risk groups and develop severe cases.
Objetive: To determine the association between coinfections by SARS-CoV-2 and other respiratory viruses and their clincal outcome.
Material and methods: RT-qPCR was performed to determine the presence of 16 respiratory viruses in 103 confirmed COVID-19 cases. Demographic and comorbid data were collected, and statistical analyzes were performed to determine associations with severity. Results: Of the 103 analyzed cases, 14 (13.6%) presented a coinfection, of these, 92% did not require hospitalization, even in those cases in which the patient presented advanced age and some comorbidities.
Conclusions: These results suggest that coinfection of SARS-CoV-2 and other respiratory viruses is not related to a more severe form of COVID-19 and, in some cases, depending on the virus involved, it could even lead to a better prognosis. These findings lay the foundations for the development of new studies that could determine the biological mechanism of this phenomenon.
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. doi: 10.1186/ s12985-019-1182-0.
Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018;100:163-188. doi: 10.1016/bs.aivir.2018.01.001.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi: 10.1056/ NEJMoa2001017.
Gorbalenya AE, Baker SC, Baric RS, Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses-a statement of the Coronavirus Study Group. BioRxiv [Preprint] 2020 [cited 2021 Apr 9]. Disponible en: https://www.biorxiv.org/con tent/10.1101/2020.02.07.937862v1.full.pdf.
Chih-Cheng L, Tzu-Ping S, Wen-Chien K, Hung-Jen T, Po-Reh H. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924.
Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-1741. doi: 10.1111/all.14238.
Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-286. doi: 10.1007/s12098 -020-03263-6.
Ling Z, Xi Xu, Gan Q, Zhang L, Lou L, Tang X, Liu J. Asymptomatic SARS-CoV-2 infected patients with persistent negative CT findings. Eur J Radiol. 2020;126:108956. doi: 10.1016/j.ejrad.2020.108956.
Kaiser J. How sick will the coronavirus make you? The answer may be in your genes. Science. 2020. [citado 2021 abril 9]. [aproximadamente 2 p.]. doi: 10.1126/science.abb9192.
Instituto de Diagnóstico y Referencia Epidemiológicos “Dr. Manuel Martínez Báez”. Lineamientos para la Vigilancia por Laboratorio de la Influenza y Otros Virus Respiratorios, InDRE. México: Secretaría de Salud; 2017. Disponible en: https://www.gob.mx/cms/uploads/attachment/file/487580/ LVL_Influenza_y_otros_virus_4T.pdf.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045.
Dirección General de Epidemiología. Anuario de Morbilidad 1984–2019. México: DGE; 2019. Disponible en: https:// epidemiologia.salud.gob.mx/anuario/html/principales_ nacional.html.
Troeger C, Blacker BF, Khalil IA, Rao PC, Cao J, Zimsen SRM, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18 (11):1191-1210. doi: 10.1016/S1473-3099(18)30310-4.
Fernandes-Matano L, Monroy-Muñoz IE, Angeles-Martínez J, Sarquiz-Martínez B, Palomec-Nava ID, Pardavé-Alejandre HD, et al. Prevalence of non-influenza respiratory viruses in acute respiratory infection cases in Mexico. PLoS One. 2017; 12(5):e0176298. doi: 10.1371/journal.pone.0176298.
Fernandes-Matano L, Monroy-Muñoz IE, M Bermúdez de León, Leal-Herrera YA, Palomec-Nava ID, Ruíz-Pacheco JA, et al. Analysis of Influenza Data Generated by Four Epidemiological Surveillance Laboratories in Mexico, 2010-2016. Epidemiol Infect. 2019;147:e183. doi: 10.1017/S0950268819000694.
Navarro-Marí JM, Pérez-Ruiz M, Galán-Montemayor JC, Marcos-Maeso MA, Reina J, Navarro MO, et al. Circulation of other respiratory viruses and viral co-infection during the 2009 pandemic influenza. Enferm Infecc Microbiol Clin. 2012;30:25-31. doi: 10.1016/S0213-005X(12)70101-5.
Pinky L, Dobrovolny HM. Coinfections of the Respiratory Tract: Viral Competition for Resources. PLoS One. 2016;11 (5):e0155589. doi: 10.1371/journal.pone.0155589.
Dobrescu I, Levast B, Lai K, Delgado-Ortega M, Walker S, Banman S, et al. In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses. Vet Mircobiol. 2014;169(1-2):18-32. doi: 10.1016/j.vetmic.2013.11.037.
Lin L, Verslype C, van Pelt JF, van Ranst M, Fevery J. Viral interaction and clinical implications of coinfection of hepatitis C virus with other hepatitis viruses. Eur J Gastroenterol Hepatol. 2006;18(12):1311-1319. doi: 10.1097/01. meg.0000243881.09820.09.
Wiegand SB, Jaroszewicz J, Potthoff A, Zu-Siederdissen CH, Maasoumy B, Deterding K, et al. Dominance of hepatitis C virus (HCV) is associated with lower quantitative hepatitis B surface antigen and higher serum interferon-gamma-induced protein 10 levels in HBV/HCV-coinfected patients. Clin Microbiol Infec. 2015;21(7):710.e1-9. doi: 10.1016/j.cmi.2015.03.003.