ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Estado actual de resistencia antimicrobiana en población pediátrica en un hospital de México / Current status of antimicrobial resistance in pediatric population in a Mexican hospital

Blanca Patricia Sánchez-Álvarez, Joaquín Rincón-Zuno, Laura Mejía-Caballero, Claudia Alix Hernández-Castellanos, Marcelo Díaz-Conde, Ixchel Magaña-Matienzo, Alberto Antonio Terrazas-Peraza

Resumen


Resumen

Introducción: hoy en día, la resistencia bacteriana es un problema mundial, se estima que en 2050 podría llegar a 10 millones de muertes por año. La resistencia bacteriana puede ser causada por diferentes mecanismos, en el caso de los betalactámicos incluyen la producción de bombas de flujo, la modificación o reducción de producción de porinas, alteración de las proteínas de unión a penicilina y producción de una enzima capaz de inactivar el antibiótico.

Objetivo: describir los principales agentes bacterianos reportados en el Hospital para el Niño de Toluca y su patrón de sensibilidad.

Material y métodos: se trata de un estudio observacional, descriptivo de cohorte retrospectivo, evaluado del 01 de enero 2018 al 31 de diciembre del 2020, en pacientes menores de 18 años hospitalizados, con infecciones confirmadas a partir de especímenes de hemocultivo, urocultivo, líquido cefalorraquídeo y secreciones.

Resultados: se reportaron 599 pacientes con cultivos positivos. Los cinco agentes aislados con mayor frecuencia fueron Estafilococos aureus, Escherichia coli, Klebsiella sp, Candida sp y Enterococcus sp, pseudomonas tercer lugar en frecuencia en 2019 y quinto en 2020. El principal coco gram positivo aislado fue S. epidermidis con 52.3% en 2020, mientras que los BGN reportan un alza de los organismos BLEE positivos en 21.5% para 2020.

Conclusiones: se mantienen como principales agentes causantes de infección S aureus, E coli, Klebsiella, Candida, enterococos y pseudomonas. Los BGN mostraron un incremento de frecuencia hasta 21.5%, mostrando resistencia alta en cefalosporinas de cuarta, gentamicina, ciprofloxacino y meropenem.

Abstract

Background: Today bacterial resistance is a global problem, it is estimated that in 2050 it could reach 10 million deaths per year. Bacterial resistance can be caused by different mechanisms, in the case of beta-lactams they include the production of flow pumps, the modification or reduction of porin production, alteration of penicillin-binding proteins and production of an enzyme capable of inactivating the antibiotic.

Objective: To describe the main bacterial agents reported in the Hospital para el Niño de Toluca and their sensitivity pattern.

Material and methods: This is an observational, descriptive, retrospective cohort study, evaluated from January 1, 2018 to December 31, 2020, in hospitalized patients under 18 years of age, with confirmed infections from blood culture specimens, urine culture, fluid cerebrospinal and secretions.

Results: 599 patients with positive cultures were reported. The five most frequently isolated agents were Staphylococci aureus, Escherichia coli, Klebsiella sp, Candida sp and Enterococci sp, Pseudomonas third in frequency in 2019 and fifth in 2020. The main isolated gram positive coconut was S. epidermidis with 52.3% in 2020 , while the BGN report an increase in positive ESBL organisms by 21.5% for 2020.

Conclusions: S aureus, E coli, Klebsiella, Candida, and pseudomonas remain the main causative agents of infection. The GNBs showed an increase in frequency up to 21.5%, showing high resistance in fourth grade cephalosporins, gentamicin, ciprofloxacin and meropenem.

 


Palabras clave


Farmacorresistencia Microbiana; Epidemiología; Pediatría; Infecciones por Bacterias Gramnegativas; Infecciones por Bacterias Grampositivas/Drug Resistance Microbial; Epidemiology; Pediatrics; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Inf

Texto completo:

PDF

Referencias


 

Solomon, SL, Kristen, BO. Antibiotic Resistance Threats in the United States: Stepping Back from the Brink. Am Fam Physician. 2014;89(12):938-41.

 

Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. doi: 10.3389/ fpubh.2014.00145.

 

Docquier, Jean-Denis, and Stefano Mangani. “An Update on β-Lactamase Inhibitor Discovery and Development.” Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 36 (2018): 13–29.

 

Garza-González E, Franco-Cendejas R, Morfín-Otero R, Echaniz-Aviles G, Rojas-Larios F, Bocanegra-Ibarias P, et al. The Evolution of Antimicrobial Resistance in Mexico During the Last Decade: Results from the INVIFAR Group. Microb Drug Resist. 2020;26(11):1372-82. doi: 10.1089/mdr.2019.0354. 

 

Morfín-Otero R, Mendoza-Olazarán S, Silva-Sánchez J, Rodríguez-Noriega E, Laca-Díaz J, Tinoco-Carrillo P, et al. Characterization of Enterobacteriaceae isolates obtained from a tertiary care hospital in Mexico, which produces extended-spectrum β-lactamase. Microb Drug Resist. 2013;19 (5):378-83. doi: 10.1089/mdr.2012.0263.

 

Saely S, Kaye KS, Fairfax MR, Chopra T, Pogue JM. Investigating the impact of the definition of previous antibiotic exposure related to isolation of extended spectrum β-lactamase-producing Klebsiella pneumoniae. Am J Infect Control. 2011; 39(5):390-95. doi: 10.1016/j.ajic.2010.08.010.

 

Medernach RL, Logan LK. The Growing Threat of Antibiotic Resistance in Children. Infect Dis Clin North Am. 2018;32(1):1- 17. doi: 10.1016/j.idc.2017.11.001.

 

King LM, Hersh AL, Hicks LA, Fleming-Dutra KE. Duration of Outpatient Antibiotic Therapy for Common Outpatient Infections, 2017. Clin Infect Dis. 2021;72(10):e663-66. doi: 10.1093/ cid/ciaa1404.

 

Kruglova EN, Stasheva MA. Research of the indirect method of determination of the woven cloths air permeability. Izvestiya Vysshikh Uchebnykh Zavedenii. 2010;8(7):95–97.

 

Wattal C, Goel N. Correction to: Pediatric Blood Cultures and Antibiotic Resistance: An Overview. Indian J Pediatr. 2020; 87(2):125-31. doi: 10.1007/s12098-020-03257-4.

 

Rosa, Regis G., Luciano Z. Goldani, and Rodrigo P. dos Santos. “Risk Factors for Multidrug-Resistant Bacteremia in Hospitalized Cancer Patients with Febrile Neutropenia: A Cohort Study.” American journal of infection control 42.1 (2014): 74–76.

 

El-Mahallawy, Hadir A. et al. “Bacteremia Due to ESKAPE Pathogens: An Emerging Problem in Cancer Patients.” Journal of the Egyptian National Cancer Institute 28.3 (2016): 157–162.

 

Dharmapalan, Dhanya et al. “High Reported Rates of Antimicrobial Resistance in Indian Neonatal and Pediatric Blood Stream Infections.” Journal of the Pediatric Infectious Diseases Society 6.3 (2017): e62–e68.

 

Instituto Nacional de Estadística y Geografía (INEGI). Censo de Población y Vivienda 2020. Aguascalientes: INEGI; 2020. Consultado 20 Oct 2021.

 

Wiener J, Quinn JP, Bradford PA, Goering RV, Nathan C, Bush K, et al. Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA. 1999;281(6):517-23. doi: 10.1001/ jama.281.6.517.

 

Rattanaumpawan P, Chuenchom N, Thamlikitkul V; Siriraj Antimicrobial Stewardship Program. Individual feedback to reduce inappropriate antimicrobial prescriptions for treating acute upper respiratory infections in an outpatient setting of a Thai university hospital. J Glob Antimicrob Resist. 2018;12: 11-14. doi: 10.1016/j.jgar.2017.08.015.

 

Desjardins M, Guibord C, Lalonde B, Toye B, Ramotar K. Evaluation of the IDI-MRSA assay for detection of methicillin-resistant staphylococcus aureus from nasal and rectal specimens pooled in a selective broth. J Clin Microbiol. 2006;44(8): 3052. doi: 10.1128/JCM.44.4.1219-1223.2006.

 

Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. Hospitals (2011-2012). Antimicrob Agents Chemother. 2013;57(12):6305-10. doi: 10.1128/AAC.01802-13.

 

Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925-42. doi: 10.2165/00003088-200443130-00005.

 

File, TM. Highlights from Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections in Adults and Children. Infectious diseases in clinical practice. 2011;19(3):207-09. doi: 10.1097/IPC.0b013e3182183324.

 

Cunha CB, Opal SM. Antibiotic Stewardship: Strategies to Minimize Antibiotic Resistance While Maximizing Antibiotic Effectiveness. Med Clin North Am. 2018;102(5):831-43. doi: 10.1016/j.mcna.2018.04.006.

 


Enlaces refback

  • No hay ningún enlace refback.