ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Desarrollo de autoinmunidad en pacientes con inmunodeficiencias primarias / Development of autoimmunity in patients with primary immunodeficiencies

Práxedes Chiunti-Andrade, Carlos Arturo Gallardo-Hernández, Sandra Luz González-Herrera

Resumen


Resumen

Las enfermedades autoinmunes constituyen un grupo de trastornos del sistema inmunológico en dónde este ataca a las células propias del organismo. Las causas pueden ser multifactoriales y no hay tratamientos específicos contra estas enfermedades. Por su parte, las inmunodeficiencias primarias (IDP) son un grupo de alteraciones originadas por defectos genéticos que tienen como consecuencia la deficiencia en la función del sistema inmunológico. Actualmente, se han descrito algunos mecanismos celulares y moleculares por los cuales se desarrollan trastornos autoinmunes en pacientes con inmunodeficiencias, sin embargo, dichos mecanismos no se han descrito con exactitud. Lo anterior, representa uno de los principales retos de las personas que lo padecen. De manera interesante, diversos reportes indican que la autoinmunidad secundaria a la inmunodeficiencia sigue algunos mecanismos celulares y moleculares como: una deficiente maduración de células inmunológicas; deficiencia de proteínas importantes para la función de los linfocitos T y B y; fallas en la función de moléculas de señalización intracelular importantes para la regulación inmunológica. En conjunto, estos mecanismos se relacionan con el desarrollo de autoinmunidad en pacientes con IDP.  El objetivo del presente trabajo fue realizar una revisión de la evidencia disponible hasta la fecha respecto a los mecanismos celulares y moleculares implicados en el desarrollo de autoinmunidad en pacientes con IDP.

 

Abstract

The autoimmune diseases include many in which the immune system is directed against the host, leading to life-threatening destruction of organs. The origin of autoimmune disorders can be multifactorial and, there are no specific therapy for these diseases. Primary immunodeficiencies are a group of immune disorders that affect different components of the innate and adaptive responses. Interestingly, patients with primary immunodeficiencies have an increased susceptibility to infectious diseases and non-infectious complications including allergies, malignancies, and autoimmune diseases. The molecular mechanism for development of autoimmunity in immunodeficiencies is unclear. The study of the complex immune regulatory and signaling mechanisms is revealing the relationships between primary immunodeficiency syndromes and autoimmune diseases. Newly, it has been demonstrated that a deficient maturation of immune cells; the deficiency of proteins important for T and B lymphocyte function and impaired signally pathways that include key molecules in regulation and activation of immune cells are associated with the development of autoimmunity in patients with primary immunodeficiencies. The aim of the present work is to review the evidence available to date regarding the cellular and molecular mechanisms involved in the development of autoimmunity in patients with primary immunodeficiencies.


Palabras clave


Sistema Inmunológico; Autoinmunidad; Enfermedades de Inmunodeficiencia Primaria; Inumunomodulación; Tolerancia Inmunológica / Immune System; Autoimmunity; Primary Immunodeficiency Diseases; Immunomodulation; Immune Tolerance.

Texto completo:

PDF

Referencias


Kölliker Frers R. Inmunología, lnmunopatogenia y fundamentos clinico-terapéuticos. Buenos Aires, Argentina: Corpues; 2016.

Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens. Cell Host Microbe. 2019 Ene; 25(1): 13-26. doi: 10.1016/j.chom.2018.12.006.

Rayner F, Isaacs JD. Therapeutic tolerance in autoimmune disease. Semin Arthritis Rheum. 2018 Dic; 48(3): 558-562. doi: 10.1016/j.semarthrit.2018.09.008.

Meffre E, O'Connor KC. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev. 2019 Nov; 292(1): 90-101. doi: 10.1111/imr.12821.

Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T Cells and Human Disease. Annu Rev Immunol. 2020 Abr; 38: 541-566. doi: 10.1146/annurev-immunol-042718-041717.

Nemazee D. Mechanisms of central tolerance for B cells. Nat Rev Immunol. 2017 May; 17(5): 281-294. doi: 10.1038/nri.2017.19.

Ortona E, Pierdominici M, Maselli A, Veroni C, Aloisi F, Shoenfeld Y. Sex-based differences in autoimmune diseases. Ann Ist Super Sanita. 2016 Abr-Jun; 52(2): 205-12. doi: 10.4415/ANN_16_02_12.

Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021 Abr; 20(4): 102792. doi: 10.1016/j.autrev.2021.102792.

Di Florio DN, Sin J, Coronado MJ, Atwal PS, Fairweather D. Sex differences in inflammation, redox biology, mitochondria and autoimmunity. Redox Biol. 2020 Abr; 31:101482. doi: 10.1016/j.redox.2020.101482.

Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017 Jun; 18(7): 716-724. doi: 10.1038/ni.3731.

Moulton VR. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front Immunol. 2018 Oct; 4;9:2279. doi: 10.3389/fimmu.2018.02279.

Demirdag Y, Fuleihan R, Orange JS, Yu JE. New primary immunodeficiencies 2021 context and future. Curr Opin Pediatr. 2021 Dic; 33(6): 657-675. doi: 10.1097/MOP.0000000000001075.

Devonshire AL, Makhija M. Approach to primary immunodeficiency. Allergy Asthma Proc. 2019 Nov; 40(6): 465-469. doi: 10.2500/aap.2019.40.4273.

Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol. 2018 Ene; 38(1): 129-143. doi: 10.1007/s10875-017-0465-8.

Lewandowicz-Uszyńska A, Pasternak G, Świerkot J, Bogunia-Kubik K. Primary Immunodeficiencies: Diseases of Children and Adults - A Review. Adv Exp Med Biol. 2021; 1289: 37-54. doi: 10.1007/5584_2020_556.

Amaya-Uribe L, Rojas M, Azizi G, Anaya JM, Gershwin ME. Primary immunodeficiency and autoimmunity: A comprehensive review. J Autoimmun. 2019 May; 99: 52-72. doi: 10.1016/j.jaut.2019.01.011.

Guffroy A, Gies V, Martin M, Korganow AS. Déficit immunitaire primitif de l’adulte et auto-immunité [Primary immunodeficiency and autoimmunity]. Rev Med Interne. 2017 Jun; 38(6): 383-392. French. doi: 10.1016/j.revmed.2016.10.388.

Allenspach E, Torgerson TR. Autoimmunity and Primary Immunodeficiency Disorders. J Clin Immunol. 2016 May; 36 Suppl 1:57-67. doi: 10.1007/s10875-016-0294-1.

Hoyos-Bachiloglu R, Chou J. Autoimmunity and immunodeficiency. Curr Opin Rheumatol. 2020 Mar; 32(2): 168-174. doi: 10.1097/BOR.0000000000000688.

Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol. 2017 Dic; 14(1): 7-18. doi: 10.1038/nrrheum.2017.198.

Hervé M, Isnardi I, Ng YS, Bussel JB, Ochs HD, Cunningham-Rundles C, Meffre E. CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J Exp Med. 2007 Jul; 204(7): 1583-93. doi: 10.1084/jem.20062287.

Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol. 2008 Dic; 20(6): 632-8. doi: 10.1016/j.coi.2008.09.001.

Meffre E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann N Y Acad Sci. 2011 Dic; 1246:1-10. doi: 10.1111/j.1749-6632.2011.06347.x.

Ng YS, Wardemann H, Chelnis J, Cunningham-Rundles C, Meffre E. Bruton's tyrosine kinase is essential for human B cell tolerance. J Exp Med. 2004 Oct; 200(7): 927-34. doi: 10.1084/jem.20040920. P

Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 2009 Feb; 206(2):421-34. doi: 10.1084/jem.20081811

Chuang HC, Tan TH. MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells. 2019 Nov; 8(11): 1433. doi: 10.3390/cells8111433.

Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol. 2016 Dic;17(12):  1352-1360. doi: 10.1038/ni.3575.

Baars MJD, Douma T, Simeonov DR, Myers DR, Kulhanek K, Banerjee S, Zwakenberg S, et al. Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity. Eur J Immunol. 2021 Feb; 51(2):471-482. doi: 10.1002/eji.201948451.

Chen K, Coonrod EM, Kumánovics A, Franks ZF, Durtschi JD, Margraf RL, et al. Germline mutations in NFKB2 implicate the noncanonical NF-κB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013 Nov; 93(5): 812-24. doi: 10.1016/j.ajhg.2013.09.009.

Wirasinha RC, Davies AR, Srivastava M, Sheridan JM, Sng XYX, Delmonte OM, et al. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J Exp Med. 2021 Feb; 218(2): e20200476. doi: 10.1084/jem.20200476.

Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA, Squires RH, et al. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet. 2010 Mar; 86(3): 447-53. doi: 10.1016/j.ajhg.2010.01.028.

Moser EK, Roof J, Dybas JM, Spruce LA, Seeholzer SH, Cancro MP, et al. The E3 ubiquitin ligase Itch restricts antigen-driven B cell responses. J Exp Med. 2019 Sep; 216(9): 2170-2183. doi: 10.1084/jem.20181953.


Enlaces refback

  • No hay ningún enlace refback.