Resumen
Introducción: la retinopatía diabética es una disfunción progresiva del sistema vascular de la retina que es secundaria a una hiperglucemia crónica. Hay varias opciones de tratamiento, entre las que destaca la panfotocoagulación.
Objetivo: comparar el nivel de dolor en pacientes sometidos a panfotocoagulación retiniana con diferente impulso.
Material y métodos: estudio comparativo, transversal, que comparó el nivel de dolor en pacientes sometidos a panfotocoagulación con impulso de 50 milisegundos (grupo A) frente a impulso convencional de 200 milisegundos (grupo B). Se utilizó U de Mann Whitney.
Resultados: fueron 26 pacientes, 12 (46.16%) mujeres y 14 (53.84%) hombres. La edad mediana fue 58.73 ± 7.31 (40- 75) años. Se estudiaron 40 ojos, 18 (45%) derechos y 22 (55%) izquierdos. El nivel medio de hemoglobina glucosilada fue 8.15 ± 1.08 (6.5-12) %. La potencia láser media fue 297 ± 53.61 (200-380) y 214.5 ± 41.73 (170-320) miliwatts, la fluencia media fue 18.85 ± 5.28 (12-28) J/cm2 y 65.9 ± 12.87 (52-98) J/cm2, el nivel medio de dolor fue 3.1 ± 1.33 (1-5) y 7.5 ± 1.23 (6-10) puntos para el grupo A y B, respectivamente y hubo diferencia estadísticamente significativa (p ≤ 0.001) en el nivel de dolor. En ningún grupo hubo complicaciones.
Conclusión: la aplicación de panfotocoagulación retiniana con impulso de 50 milisegundos provoca menos dolor y efectos secundarios que la panfotocoagulación con impulso de 200 milisegundos.
Abstract
Background: Diabetic retinopathy is a progressive disfunction of blood vessels of the retina secondary to chronic hyperglycemia. There are several treatments, out of which panretinal photocoagulation (PRP) stands out.
Objective: To compare the level of pain in patients undergoing PRP with different impulse.
Material and methods: Comparative, cross-sectional study that compared the level of pain in patients undergoing PRP with a 50-millisecond pulse (group A) versus conventional 200 milliseconds pulse (group B). Mann-Whitney U test was used.
Results: There were 26 patients, 12 (46.16%) female and 14 (53.84%) males. The median age was 58.73 ± 7.31 (40-75) years. 40 eyes were studied, 18 (45%) right and 22 (55%) left. The mean level of glycated hemoglobin was 8.15 ± 1.08 (6.5-12) %. The mean laser power was 297 ± 53.61 (200-380) and 214.5 ± 41.73 (170-320) milliwatts; the mean fluence was 18.85 ± 5.28 (12-28) J/cm2 and 65.9 ± 12.87 (52-98) J/cm2; the mean level of pain was 3.1 ± 1.33 (1-5) and 7.5 ± 1.23 (6-10) points for group A and B, respectively, and there was statistically significant difference (p ˂ 0.001) in the level of pain. There were no complications in any group.
Conclusion: The application of retinal 50-millisecond pulse PRP causes less pain and side effects than 200-millisecond pulse PRP.
Roy MS, Klein R, O’Colmain BJ, Klein BEK, Moss SE, Kempen JH. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch Ophthalmol. 2004;122(4):546–51. doi: 10.1001/archopht.122.4.546.
Wilkinson-Berka JL, Miller AG. Update on the treatment of diabetic retinopathy. ScientificWorldJournal. 2008;8:98-120. doi: 10.1100/tsw.2008.25.
Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci. 2018;19(6). doi: 10.3390/ ijms19061816.
Baumal C, Duker J. Manejo de la retinopatía diabética. 2° edición. España: Elsevier; 2018.
Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology. 2018;125(10):1608-22. doi: 10.1016/j.ophtha.2018.04.007.
Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014;2014(11). doi: 10.1002/14651858.CD011234.pub2.
Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1987;94(7):761-74. doi: 10.1016/s0161-6420(87)33527-4.
Muqit MMK, Marcellino GR, Gray JCB, McLauchlan R, Henson DB, Young LB, et al. Pain responses of Pascal 20 ms multi-spot and 100 ms single-spot panretinal photocoagulation: Manchester Pascal Study, MAPASS report 2. Br J Ophthalmol. 2010;94(11):1493-8. doi: 10.1136/bjo.2009.176677.
Ramezani A, Entezari M, Shahbazi MM, Semnani Y, Nikkhah H, Yaseri M. Analgesic Effect of Topical Sodium Diclofenac before Retinal Photocoagulation for Diabetic Retinopathy: A Randomized Double-masked Placebo-controlled Intraindividual Crossover Clinical Trial. Korean J Ophthalmol. 2017; 31(2):102. doi: 10.3341/kjo.2017.31.2.102.
Vaideanu D, Taylor P, McAndrew P, Hildreth A, Deady JP, Steel DH. Double masked randomised controlled trial to assess the effectiveness of paracetamol in reducing pain in panretinal photocoagulation. The British Journal of Ophthalmology. 2006; 90(6):713. doi: 10.1136/bjo.2005.076091.
Ginsburg RN, Duker JS. Globe Perforation Associated with Retrobulbar and Peribulbar Anesthesia. 2009;8(2):87-95. DOI: 10.3109/08820539309060215.
Kikushima W, Shijo T, Furuhata Y, Sakurada Y, Kashiwagi K. Comparison of the 1-Year Visual and Anatomical Outcomes between Subthreshold Red (670 nm) and Yellow (577 nm) Micro-Pulse Laser Treatment for Diabetic Macular Edema. Pharmaceuticals (Basel). 2021;14(11). doi: 10.3390/ ph14111100.
Frizziero L, Calciati A, Torresin T, Midena G, Parrozzani R, Pilotto E, et al. Diabetic Macular Edema Treated with 577-nm Subthreshold Micropulse Laser: A Real-Life, Long-Term Study. J Pers Med [Internet]. 2021 May 1 [cited 2022 Jun 28];11(5). doi: 10.3390/jpm11050405.
American Association of Ophthalmology. Curso de ciencias básicas y clínicas en oftalmología. España: Elsevier España; 2012.
Jorge EC, Jorge EN, Botelho M, Farat JG, Virgili G, el Dib R. Monotherapy laser photocoagulation for diabetic macular oedema. Cochrane Database Syst Rev. 2018;10(10):CD010859.
Jaime Claramunt L. Desprendimiento de retina. Revista Médica Clínica Las Condes. 2010;21(6):956-60. doi: 10.1016/ S0716-8640(10)70621-0.
Sánchez-Pérez I. Facultad de Óptica Guía y Optometría 2019-2020. Madrid: Universidad Complutense; 2019. Disponible en: https://www.ucm.es/data/cont/docs/13-2019- 07-12-Gu%C3%ADa%20de%20la%20Facultad%20de%20 %C3%93ptica%20y%20Optometr%C3%ADa%202019-20.pdf.
Al-Hussainy S, Dodson PM, Gibson JM. Pain response and follow-up of patients undergoing panretinal laser photocoagulation with reduced exposure times. Eye (Lond). 2008;22(1): 96-9. doi: 10.1038/sj.eye.6703026.
Vujosevic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E. Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina. 2010 Jun;30(6):908-16. doi: 10.1097/IAE.0b013e3181c96986.
Nemcansky J, Stepanov A, Nemcanska S, Masek P, Langrova H, Studnicka J. Single session of pattern scanning laser versus multiple sessions of conventional laser for panretinal photocoagulation in diabetic retinopathy: Efficacy, safety and painfulness. PLoS ONE. 2019;14(7). doi: 10.1371/journal. pone.0219282.