ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Polimorfismos asociados a la caries dental en poblaciones pediátricas: una revisión sistemática / Polymorphisms associated with dental caries in pediatric populations: a systematic review

Carlos González-Casamada, Nelly Molina-Frechero, León Francisco Espinosa-Cristóbal, Salvador García-López, Enrique Castañeda-Castaneira

Resumen


Resumen

Se ha reportado que los polimorfismos de nucleótido único (SNPs) juegan un papel importante en la etiología de la caries dental. El objetivo de esta investigación fue, a través de una revisión sistemática, identificar los SNPs asociados recientemente a la caries dental en poblaciones pediátricas. Se incluyeron estudios realizados en humanos de hasta 18 años de edad que evaluaron la relación entre los SNPs y la caries dental, publicados desde el 2017 hasta el 2022. Se excluyeron los artículos que abarcaron otras variables de estudio. PubMed, ScienceDirect y Web of Science se utilizaron para la búsqueda de información y los artículos incluidos fueron evaluados con una de las herramientas del Instituto Joanna Briggs. Fueron seleccionados 25 artículos, al 60% de ellos se le otorgó calidad metodológica alta. En total participaron 10,743 sujetos de invetigación, cuyas edades variaron de 20 meses a 17 años. Los SNPs considerados factores de riesgo fueron identificados en los genes miRNA202, VDR, AMELX, TUFT1, KLK4, MBL2, ENAM, DEFB1, HLA-DRB1, TAS1R1, DSPP, RUNX2 y MMP13, los considerados factores de protección se identificaron en los genes MMP20, AMBN, MMP9, TIMP2, TNF-α, VDR, IL1B, ENAM y HLA-DRB1. Esta revisión sistemática expone los polimorfismos genéticos que se encuentran asociados a la etiología de la caries en niños y adolescentes, algunos de los cuales actúan como factores de riesgo y otros como factores de protección ante la enfermedad.

 

Abstract

Single nucleotide polymorphisms (SNPs) have been reported to play an important role in the etiology of dental caries. The aim of this research was, through a systematic review, to identify SNPs recently associated with dental caries in pediatric populations. We included studies performed in humans up to 18 years of age that evaluated the relationship between SNPs and dental caries from 2017 to 2022. Articles that covered other study variables were excluded. PubMed, ScienceDirect and Web of Science were used to search for information and the included articles were evaluated with one of the Joanna Briggs Institute’s tools. Twenty-five articles were selected, 60% of which were given high methodological quality. A total of 10,743 research subjects, ranging in age from 20 months to 17 years, participated in the study. The SNPs considered risk factors were identified in the genes miRNA202, VDR, AMELX, TUFT1, KLK4, MBL2, ENAM, DEFB1, HLA-DRB1, TAS1R1, DSPP, RUNX2 and MMP13; those considered protective factors were identified in the genes MMP20, AMBN, MMP9, TIMP2, TNF-α, VDR, IL1B, ENAM and HLA-DRB1. This systematic review presents the genetic polymorphisms that are associated with the etiology of caries in children and adolescents, some of which act as risk factors and others as protective factors against the disease.


Palabras clave


Caries Dental; Genética; Pediatría / Dental Caries; Genetics; Pediatrics

Texto completo:

PDF

Referencias


Machiulskiene V, Campus G, Carvalho JC, et al. Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020; 54(1): 7-14. Doi: 10.1159/000503309.

Anil S, Anand PS. Early Childhood Caries: Prevalence, Risk Factors, and Prevention. Front Pediatr. 2017; 5: 157. doi: 10.3389/fped.2017.00157.

Kazeminia M, Abdi A, Shohaimi S, et al. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: a systematic review and meta-analysis. Head Face Med. 2020; 16(1): 22. doi: 10.1186/s13005-020-00237-z.

Gustafsson BE, Quensel CE, Lanke LS, et al. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand. 1954; 11(3-4): 232-64. doi: 10.3109/00016355308993925.

Vieira AR, Modesto A, Marazita ML. Caries: review of human genetics research. Caries Res. 2014; 48(5): 491-506. doi: 10.1159/000358333.

National Human Genome Research Institute. Talking Glossary of Genomic and Genetic Terms. [base de datos en internet]. [consultado el 7/11/2022]. Disponible en: https://www.genome.gov/es/ genetics-glossary/Polimorfismos-de-nucleotido-%C3%BAnico.

Kwok PY, Chen X. Detection of single nucleotide polymorphisms. Curr Issues Mol Biol. 2003; 5(2): 43-60. doi: 10.21775/ cimb.005.043.

Opal S, Garg S, Jain J, et al. Genetic factors affecting dental caries risk. Aust Dent J. 2015; 60(1): 2-11. Doi: 10.1111/ adj.12262.

Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Single Nucleotide Polymorphism in the Aetiology of Caries: Systematic Literature Review. Caries Res. 2017; 51(4): 425-35. doi: 10.1159/000476075.

Cavallari T, Arima LY, Ferrasa A, et al. Dental caries: Genetic and protein interactions. Arch Oral Biol. 2019; 108: 104522. doi: 10.1016/j.archoralbio.2019.104522.

Lips A, Antunes LS, Antunes LA, et al. Salivary protein polymorphisms and risk of dental caries: a systematic review. Braz Oral Res. 2017; 31: e41. doi: 10.1590/1807-3107BOR2017.vol31.0041.

Wang X, Shaffer JR, Weyant RJ, et al. Genes and their effects on dental caries may differ between primary and permanent dentitions. Caries Res. 2010; 44(3): 277-84. doi: 10.1159/000314676.

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71. doi: 10.1136/bmj.n71.

Joanna Briggs Institute (JBI). JBI Critical Appraisal Tools (Checklist for Case Control Studies). [bases de datos en internet]. [Consultado el 12/09/2022]. Disponible en: https://jbi. global/critical-appraisal-tools.

Lips A, Antunes LS, Antunes LA, et al. Genetic Polymorphisms in DEFB1 and miRNA202 Are Involved in Salivary Human β-Defensin 1 Levels and Caries Experience in Children. Caries Res. 2017; 51(3): 209-15. doi: 10.1159/000458537.

Filho AV, Calixto MS, Deeley K, et al. MMP20 rs1784418 Protects Certain Populations against Caries. Caries Res. 2017; 51(1): 46-51. doi: 10.1159/000452345.

Olszowski T, Milona M, Janiszewska-Olszowska J, et al. The Lack of Association between FCN2 Gene Promoter Region Polymorphisms and Dental Caries in Polish Children. Caries Res. 2017; 51(1): 79-84. doi: 10.1159/000455054.

Kong YY, Zheng JM, Zhang WJ, et al. The relationship between vitamin D receptor gene polymorphism and deciduous tooth decay in Chinese children. BMC Oral Health. 2017; 17(1): 111. doi: 10.1186/s12903-017-0398-x.

Gerreth K, Zaorska K, Zabel M, et al. Chosen single nucleotide polymorphisms (SNPs) of enamel formation genes and dental caries in a population of Polish children. Adv Clin Exp Med. 2017; 26(6): 899-905. doi: 10.17219/acem/63024.

Izakovicova-Holla L, Borilova-Linhartova P, Kastovsky J, et al. Vitamin D Receptor TaqI Gene Polymorphism and Dental Caries in Czech Children. Caries Res. 2017; 51(1): 7-11. doi: 10.1159/000452635.

Alyousef YM, Borgio JF, AbdulAzeez S, et al. Association of MBL2 Gene Polymorphism with Dental Caries in Saudi Children. Caries Res. 2017; 51(1): 12-16. doi: 10.1159/000450963.

Wang M, Qin M, Xia B. The association of Enamelin, Lactoferrin, and Tumour necrosis factor alpha gene polymorphisms with high caries susceptibility in Chinese children under 4 years old. Arch Oral Biol. 2017; 80: 75-81. doi: 10.1016/j. archoralbio.2017.03.023.

Kastovsky J, Borilova-Linhartova P, Musilova K, et al. Lack of Association between BMP2/DLX3 Gene Polymorphisms and Dental Caries in Primary and Permanent Dentitions. Caries Res. 2017; 51(6): 590-95. doi: 10.1159/000479828.

Yu M, Jiang QZ, Sun ZY, et al. Association between Single Nucleotide Polymorphisms in Vitamin D Receptor Gene Polymorphisms and Permanent Tooth Caries Susceptibility to Permanent Tooth Caries in Chinese Adolescent. Biomed Res Int. 2017; 2017: 4096316. doi: 10.1155/2017/4096316.

Borilova-Linhartova P, Deissova T, Musilova K, et al. Lack of association between ENAM gene polymorphism and dental caries in primary and permanent teeth in Czech children. Clin Oral Investig. 2018; 22(4): 1873-7. doi: 10.1007/s00784-017-2280-2.

Wang M, Qin M. Lack of association between LTF gene polymorphisms and different caries status in primary dentition. Oral Dis. 2018; 24(8): 1545-53. doi: 10.1111/odi.12939.

Raivisto T, Heikkinen A, Kovanen L, et al. SNP Analysis of Caries and Initial Caries in Finnish Adolescents. Int J Dent. 2018; 1586762. doi: 10.1155/2018/1586762.

Oliveira DSB, Segato RAB, Oliveira S, et al. Association between genetic polymorphisms in DEFB1 and microRNA202 with caries in two groups of Brazilian children. Arch Oral Biol. 2018; 92: 1-7. doi: 10.1016/j.archoralbio.2018.04.010.

Hu XP, Song TZ, Zhu YY, et al. Association of ENAM, TUFT1, MMP13, IL1B, IL10 and IL1RN gene polymorphism and dental caries susceptibility in Chinese children. J Int Med Res. 2019; 47(4): 1696-704. doi: 10.1177/0300060519828450.

Devang-Divakar D, Alanazi SAS, Assiri MYA, et al. Association between ENAM polymorphisms and dental caries in children. Saudi J Biol Sci. 2019; 26(4): 730-5. doi: 10.1016/j. sjbs.2018.01.010.

Wang L, Li B, Tie X, et al. Association between HLA-DRB1* allele polymorphism and caries susceptibility in Han Chinese children and adolescents in the Xinjiang Uygur Autonomous Region. J Int Med Res. 2020; 48(4): 300060519893852. doi: 10.1177/0300060519893852.

Arid J, Antunes LAA, Koch LFA, et al. Association of taste receptor gene polymorphisms with dental caries. Braz Oral Res. 2020; 19: e055. doi: 10.1590/1807-3107bor-2020.vol34.0055.

Borilova-Linhartova P, Deissova T, Kukletova M, et al. Matrix metalloproteinases gene variants and dental caries in Czech children. BMC Oral Health. 2020; 20(1): 138. doi: 10.1186/ s12903-020-01130-6.

Hu XP, Zhou HJ, Li ZQ, et al. Lack of associations between lactoferrin (LTF) and mannose-binding lectin 2 (MBL2) gene polymorphism and dental caries susceptibility. J Int Med Res. 2020; 48(7): 300060520943428. doi: 10.1177/0300060520943428.

Sanhueza J, Bustos L, Rodríguez N, et al. Polymorphisms in DSSP (rs36094464) and RUNX2 (rs566712) Genes Contribute to the Susceptibility of Dental Caries in Childhood. Int. J. Morphol. 2021; 39(3): 802-8. doi: http://dx.doi.org/10.4067/ S0717-95022021000300802.

Al Marshad LK, AlJobair AM, Al-Anazi MR, et al. Association of polymorphisms in genes involved in enamel formation, taste preference and immune response with early childhood caries in Saudi pre-school children. Saudi J Biol Sci. 2021; 28(4): 2388-95. doi: 10.1016/j.sjbs.2021.01.036.

Çağırır F, Eronat N, Durmaz A, et al. The association between genetic polymorphisms in matrix metalloproteinases and caries experience. Clin Oral Investig. 2021; 25(9): 5403-10. doi: 10.1007/s00784-021-03848-1.

Olszowski T, Milona M, Janiszewska-Olszowska J, et al. FCN1 polymorphisms are not the markers of dental caries susceptibility in Polish children: A case-control study. Oral Dis. 2022; 28(3): 771-6. doi: 10.1111/odi.13806.

Wu L, Li Z, Zhou J, et al. An association analysis for genetic factors for dental caries susceptibility in a cohort of Chinese children. Oral Dis. 2022; 28(2): 480-94. doi: 10.1111/odi.13758.

Hatipoğlu Ö, Saydam F. Association between rs11362 polymorphism in the beta-defensin 1 (DEFB1) gene and dental caries: A meta-analysis. J Oral Biosci. 2020; 62(3): 272-9. doi: 10.1016/j.job.2020.06.004.

Hujoel PP. Vitamin D and dental caries in controlled clinical trials: systematic review and meta-analysis. Nutr Rev. 2013; 71(2): 88-97. doi: 10.1111/j.1753-4887.2012.00544.x.

Lu Y, Papagerakis P, Yamakoshi Y, et al. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem. 2008; 389(6): 695-700. doi: 10.1515/BC.2008.080.

Hu JC, Yamakoshi Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med. 2003; 14(6): 387-98. doi: 10.1177/154411130301400602.

Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci (Landmark Ed). 2012; 17(6): 1996-2023. doi: 10.2741/4034.

Jain A, Bahuguna R. Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: An overview. J Oral Biol Craniofac Res. 2015; 5(3): 212-8. doi: 10.1016/j. jobcr.2015.06.015.


Enlaces refback

  • No hay ningún enlace refback.