ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Correlación de fórmulas para gasto energético con calorimetría indirecta en pacientes críticos / Correlation of equations for energy expenditure with indirect calorimetry in critically ill patients

Angélica López-Villegas, Ma. Natalia Gómez-González, Pedro Luis González-Carrillo

Resumen


Resumen

Introducción: a nutrición en la unidad de cuidados intensivos (UCI) es una piedra angular; sin embargo, los requerimientos energéticos son un tema controversial aún no resuelto. La calorimetría es el estándar de oro para calcular el gasto energético, pero es costosa y no está disponible en todas las áreas de las UCI. Se han desarrollado fórmulas para calcular el gasto energético basal (GEB) y hacer el proceso más sencillo.

Objetivo: validar las fórmulas predictivas de GEB comparado con el obtenido con calorimetría indirecta (CI) ventilatoria dentro de la valoración nutricia en los pacientes de UCI. Material y métodos: estudio transversal analítico retrolectivo. Realizamos medición de GEB a los pacientes de la UCI de un hospital de tercer nivel con calorimetría indirecta ventilatoria y se compararon los resultados obtenidos con los de las fórmulas de Harris Benedict, Muffin-St. Jeor, Institute of Medicine y Faisy. Resultados: se incluyeron un total de 49 pacientes; se encontró correlación moderada con significación estadística entre las medidas de GEB obtenidas por calorimetría indirecta, con las obtenidas por cuatro fórmulas predictivas que se estudiaron. La fórmula de Faisy obtuvo la corrección más fuerte con una r = 0.461 (p = 0.001).

Conclusión: la correlación entre el GEB obtenido por fórmulas predictivas y por CI es de ligera a moderada, debido a la heterogeneidad del paciente crítico y su naturaleza cambiante a lo largo de su enfermedad.

 

Abstract

Background: Nutrition in the Intensive Care Unit (ICU) is a cornerstone; however, energy requirements are a controversial issue that has not yet been resolved. Calorimetry is the gold standard for calculating energy expenditure, but it is expensive and not available in all ICU areas. Formulas have been developed to calculate basal energy expenditure (BAE) and make the process easier.

Objective: To validate the predictive formulas of BAE compared to that obtained with ventilatory indirect calorimetry (IC) within the nutritional assessment in ICU patients.

Material and methods: Analytical cross-sectional retrolective study. We performed BAE measurement on patients in the ICU of a third level hospital with ventilatory indirect calorimetry and compared the results obtained with those of the Harris Benedict, Muffin-St. Jeor, Institute of Medicine, and Faisy equations.

Results: A total of 49 patients were included; a moderate correlation with statistical significance was found between the BAE measurements obtained by indirect calorimetry, with those obtained by four predictive equations that were studied. The Faisy equation obtained the strongest correction with r = 0.461 (p = 0.001).

Conclusion: The correlation between the BAE obtained by predictive equations and by IC goes from mild to moderate, due to the heterogeneity of critical patients and their changing nature throughout their disease.


Palabras clave


Calorimetría Indirecta; Metabolismo Energético; Cuidados Críticos; Fórmulas Predictivas; Estudios Transversales / Calorimetry, Indirect; Energy Metabolism; Critical Care; Predictive Formulas; Cross-Sectional Studies

Texto completo:

PDF

Referencias


Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48-79. doi: 10.1016/j. clnu.2018.08.037.

Costelli P, Baccino FM. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis. Curr Opin Clin Nutr Metab Care. 2003;6(4):407-12. doi: 10.1097/01.mco.0000078984.18774.02.

Mourtzakis M, Wischmeyer P. Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care. 2014;17(5):389-95. doi: 10.1097/MCO.0000000000000088.

Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017;43(3):380-98. doi: 10.1007/s00134-016-4665-0.

Moonen HPFX, Beckers KJH, van Zanten ARH. Energy expenditure and indirect calorimetry in critical illness and convalescence: current evidence and practical considerations. J Intensive Care. 2021;9(1):1-13. doi: 10.1186/s40560-021-00524-0.

Delsoglio M, Achamrah N, Berger MM, Pichard C. Indirect calorimetry in clinical practice. J Clin Med. 2019;8(9):1-19. doi: 10.3390/jcm8091387.

Oshima T, Berger MM, De Waele E, Guttormsen AB, Heidegger CP, Hiesmayr M, et al. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin Nutr. 2017;36(3):651-62. doi: 10.1016/j.clnu.2016.06.010.

Yatabe T. Strategies for optimal calorie administration in critically ill patients. J Intensive Care. 2019;7(1):1-9. doi: 10.1186/ s40560-019-0371-7.

Parra Carriedo A, Pérez-Lizaur AB. Comparación de la estimación del gasto energético basal por cuatro ecuaciones versus calorimetría indirecta en mujeres con peso normal, sobrepeso y obesidad. Rev Endocrinol y Nutr. 2012;20(2):63-6.

Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241-7. doi: 10.1093/ajcn/51.2.241.

Institute of Medicine. Dietary Reference Intakes. Washington, DC: The National Academies Press; [sin fecha de publicación].

Faisy C, Guerot E, Diehl JL, Labrousse J, Fagon JY. Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr. 2003 Aug 1;78(2):241-9. doi: 10.1093/ ajcn/78.2.241.

Wichansawakun S, Meddings L, Alberda C, Robbins S, Gramlich L. Energy requirements and the use of predictive equations versus indirect calorimetry in critically ill patients. Appl Physiol Nutr Metab. 2014;40(2):207-10. doi: 10.1139/apnm-2014-0276.

Zusman O, Kagan I, Bendavid I, Theilla M, Cohen J, Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin Nutr. 2019; 38(3):1206-10. doi: 10.1016/j.clnu.2018.04.020.

Smetana KS, Hannawi Y, May CC. Indirect Calorimetry Measurements Compared With Guideline Weight-Based Energy Calculations in Critically Ill Stroke Patients1. J Parenter Enter Nutr. 2021;45(7):1484-90. doi: doi.org/10.1002/jpen.2035.

Morbitzer KA, Wilson WS, Chaben AC, Darby A, Dehne KA, Brown ER, et al. Energy Expenditure in Critically Ill Adult Patients With Acute Brain Injury: Indirect Calorimetry vs. Predictive Equations. Front Neurol. 2020;10:1426. doi: 10.3389/ fneur.2019.01426.

Lee HY, Oh BM. Nutrition Management in Patients with Traumatic Brain Injury: A Narrative Review. Brain Neurorehabil. 2022;15(1). doi: 10.12786/bn.2022.15.e4.

Kamiyama J, Takazawa T, Yanagisawa A, Kanamoto M, Tobe M, Hinohara H, et al. Comparison between resting energy expenditure measured by indirect calorimetry and metabolic rate estimate based on Harris-Benedict equation in septic patients. Biomed Res Clin Prac. 2016;1(4):148-52. doi: 10.15761/BRCP.1000123.

Pérez-Flores JE, Chávez-Tostado M, Larios-del-Toro YE, García-Rentería J, Rendón-Félix J, Salazar-Parra M, et al. Evaluación del estado nutricional al ingreso hospitalario y su asociación con la morbilidad y mortalidad en pacientes mexicanos. Nutr Hosp. 2016;33(4):872-8. doi: 10.20960/nh.386.

Ponce-Vega KA, Campos-Arroyo AG, Román-Gámez RA, Guzmán-Solorio M. Propuesta de una cédula de evaluación nutricia para identificar el riesgo nutricional. Rev Med Inst Mex Seguro Soc. 2020;58(4):400-7. doi: 10.24875/RMIMSS. M20000064.

Mourão F, Amado D, Ravasco P, Marqués Vidal P, Camilo ME. Nutritional risk and status assessment in surgical patients: A challenge amidst plenty. Nutr Hosp. 2004;19(2):83-8.

Gonzalez-Granda A, Schollenberger A, Haap M, Riessen R, Bischoff SC. Optimization of Nutrition Therapy with the Use of Calorimetry to Determine and Control Energy Needs in Mechanically Ventilated Critically Ill Patients : The ONCA Study , a Randomized , Prospective Pilot Study. J Parenter Enter Nutr. 2018;0(0). doi: 10.1002/jpen.1450.

Harris JA, Benedict FG. A Biometric Study of Human Basal Metabolism. Proc Natl Acad Sci. 1918;4(12):370-3. doi: 10.1073/pnas.4.12.370.

Amirkalali B, Hosseini S, Heshmat R, Larijani B. Comparison of Harris Benedict and Mifflin-ST Jeor equations with indirect calorimetry in evaluating resting energy expenditure. Indian J Med Sci. 2008;62(7):283-90.

Tah PC, Poh BK, Kee CC, Lee ZY, Hakumat-Rai VR, Mat Nor MB, et al. Do we need different predictive equations for the acute and late phases of critical illness? A prospective observational study with repeated indirect calorimetry measurements. Eur J Clin Nutr. 2022;76(4):527-34. doi: 10.1038/ s41430-021-00999-y.

Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, et al. The tight calorie control study (TICACOS): A prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37(4): 601-9. doi: 10.1007/s00134-011-2146-z.

Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: A randomised controlled clinical trial. Lancet. 2013;381(9864):385- 93. doi: 10.1016/S0140-6736(12)61351-8.


Enlaces refback

  • No hay ningún enlace refback.