Resumen
El cáncer de colon es una de las neoplasias malignas más comunes en el mundo, caracterizada por un crecimiento descontrolado de las células de la mucosa del colon, cuyo tratamiento depende de las características propias del tumor tales como su localización, tamaño, extensión de metástasis y el estado de salud del paciente. La nanomedicina se muestra como una nueva estrategia para superar las limitaciones de las terapias actuales ya que debido al tamaño nanométrico de los materiales empleados, estos pueden ignorar los mecanismos asociados a la resistencia multifármaco. Las nanocorazas de oro poseen la capacidad de absorber luz infrarroja cercana y convertirla en energía térmica para producir hipertermia en tumores in vivo. Esto se lleva a cabo mediante la metodología de hipertermia asistida por nanopartículas, la cual consiste en realizar irradiación a las nanopartículas con una fuente de energía externa que produzca calor entre los 39-45 °C, lo que genera un calentamiento controlado, dirigido y específico contra el tumor sin dañar el tejido sano circundante. En comparación con otros nanomateriales, las nanocorazas de oro presentan alta biocompatibilidad y baja citotoxicidad. Por lo que, la terapia en combinación con quimioterapéuticos más hipertermia sobre nanocorazas de oro, se presenta como un enfoque novedoso y prometedor para el tratamiento del cáncer de colon.
Abstract
Colon cancer or colorectal cancer is one of the most common malignant neoplasms in the world, characterized by uncontrolled cell growth on the colon mucosa. Treatment approaches depend primarily on the characteristics of the tumor´s localization, size, metastasis, and the health status of the patient. Nanomedicine shows itself as a novelty strategy to overcome the limitations of the therapies used in the clinic due to the disregard of the mechanisms associated with multidrug resistance because of the nanometric size of the particles utilized. Gold nanoshells are spheric structures of an approximate size of 30 nm, coated with an ultrathin gold layer that can absorb near-infrared light and convert it to thermal energy to produce hyperthermia on in vivo models of cancer tumors. Nanoparticles-assisted hyperthermia consists of control, direct, and specific heating against the tumor cells by nanoparticle irradiation with an external power source capable of increasing temperature to 39°C - 45°C without damaging surrounding healthy tissue. Compared with other nanomaterials, gold nanoshells show high biocompatibility and low cytotoxicity, which is why adjuvant chemotherapy and hyperthermia on gold nanoshells is a novel and promising approach for the treatment of colorectal cancer.
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209–249 (2021).
Biller, L. H. & Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 325, 669–685 (2021).
Sawicki, T. et al. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel) 13, 2025 (2021).
Lawler, M. et al. Colorectal Cancer. Abeloff’s Clinical Oncology 1219-1280.e15 (2020) doi:10.1016/B978-0-323-47674-4.00074 -8.
Brar, B. et al. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. Frontiers in Nanotechnology 3, 66 (2021).
Hossain, Md. S. et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel) 14, 1732 (2022).
Berman, R., Chowdhry, A., Lee, V. & Pappas, L. Tratamiento del cáncer de colon - NCI. https://www.cancer.gov/espanol/ tipos/colorrectal/pro/tratamiento-colorrectal-pdq#_105.
Alzahrani, S. M., Al Doghaither, H. A. & Al-Ghafar, A. B. General insight into cancer: An overview of colorectal cancer (review). Mol Clin Oncol 15, 1–8 (2021).
Torrecillas-Torres, L. et al. Recomendaciones para diagnóstico y tratamiento del cáncer de colon y recto en México. Gaceta mexicana de oncología 18, 265–327 (2019).
Sobrero, A. & Bennicelli, E. Chemotherapy: which drug and when? Annals of Oncology 21, vii130–vii133 (2010).
Xie, Y. H., Chen, Y. X. & Fang, J. Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 5, (2020).
Emran, T. Bin et al. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 12, 891652 (2022).
Mármol, I., Quero, J., Jesús Rodríguez-Yoldi, M. & Cerrada, E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. (2019) doi:10.3390/ cancers11060780.
Cabeza, L. et al. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech 21, 1–15 (2020).
Moy, A. J. & Tunnell, J. W. Combinatorial immunotherapy and nanoparticle mediated hyperthermia. Adv Drug Deliv Rev 114, 175–183 (2017).
Simón, M., Norregaard, K., Jørgensen, J. T., Oddershede, L. B. & Kjaer, A. Fractionated photothermal therapy in a murine tumor model: Comparison with single dose. Int J Nanomedicine 14, 5369–5379 (2019).
Pedrosa, P., Vinhas, R., Fernandes, A. & Baptista, P. V. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool? Nanomaterials 5, 1853 (2015).
Riley, R. S. & Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9, (2017).
Libutti, S. K. et al. Phase I and Pharmacokinetic Studies of CYT-6091, a Novel PEGylated Colloidal Gold-rhTNF Nanomedicine. Clin Cancer Res 16, 6139 (2010).
Kharlamov, A. N. et al. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale 7, 8003–8015 (2015).
Zhang, J., Zhao, T., Han, F., Hu, Y. & Li, Y. Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system. J Nanobiotechnology 17, (2019).
Dubaj, T. et al. Pharmacokinetics of PEGylated Gold Nanoparticles: In Vitro—In Vivo Correlation. Nanomaterials 12, (2022).
Shin, Y. et al. Two-dimensional Hyper-branched Gold Nanoparticles Synthesized on a Two-dimensional Oil/Water Interface. Scientific Reports 2014 4:1 4, 1–6 (2014).
Lee, S. Y. & Shieh, M. J. Platinum(II) Drug-Loaded Gold Nanoshells for Chemo-Photothermal Therapy in Colorectal Cancer. ACS Appl Mater Interfaces 12, 4254–4264 (2020).
Yang, S. J. et al. The synergistic effect of chemo-photothermal therapies in SN-38-loaded gold-nanoshell-based colorectal cancer treatment. Nanomedicine (Lond) 17, 23–40 (2022).
Khlebtsov, N. & Dykmana, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem Soc Rev 40, 1647–1671 (2011).
Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat Mater 19, 566–575 (2020).
Kozics, K. et al. Pharmacokinetics, Biodistribution, and Biosafety of PEGylated Gold Nanoparticles In Vivo. PEGylated Gold Nanoparticles In Vivo. Nanomaterials 11, 1702 (2021).
Borlan, R., Focsan, M., Maniu, D. & Astilean, S. Interventional NIR fluorescence imaging of cancer: Review on next generation of dye-loaded protein-based nanoparticles for real-time feedback during cancer surgery. Int J Nanomedicine 16, 2147– 2171 (2021).
Peng, W. et al. Optimal Irreversible Electroporation Combined with Nano-Enabled Immunomodulatory to Boost Systemic Antitumor Immunity. Adv Healthc Mater (2023) doi:10.1002/ADHM. 202302549.