Resumen
La distrofia muscular de Duchenne (DMD), causada por mutaciones en el gen de la distrofina, es la distrofia muscular congénita más frecuente y se caracteriza por una respuesta inflamatoria crónica mediada por células inmunitarias y citoquinas. La obesidad, característica común en la DMD, exacerba esta inflamación. Aunque los corticosteroides son el tratamiento convencional, sus efectos adversos son sustanciales. El consumo de ácidos grasos poliinsaturados omega-3 (AGPI ω-3), como terapia adyuvante, podría ser de utilidad para disminuir la inflamación en la DMD. La revisión exhaustiva de estudios desde 2011 y hasta mayo de 2024 revela que los AGPI ω-3 tienen efectos beneficiosos en los ratones mdx, un modelo de la DMD. Estos incluyen la reducción del proceso inflamatorio tanto en el músculo como en la circulación, además de la disminución de mio-necrosis, resultando en mayor fuerza y resistencia muscular. La suplementación con AGPI ω-3 también tuvo un impacto positivo en el tejido cardíaco, reduciendo la fibrosis y la inflamación. Estos hallazgos fueron consistentes con los observados en pacientes con DMD, se observó una disminución de marcadores inflamatorios como NF-kB, IL-1β e IL-6, y un aumento de la citoquina antiinflamatoria IL-10, lo que sugiere un potencial efecto antiinflamatorio. Estos hallazgos apoyan el uso de AGPI ω-3 como terapia adyuvante en DMD, aunque se necesita investigación adicional para entender completamente sus mecanismos y beneficios clínicos.
Abstract
Duchenne Muscular Dystrophy (DMD), caused by mutations in the dystrophin gene, is the most common congenital muscular dystrophy and is characterized by a chronic inflammatory response mediated by immune cells and cytokines. Obesity, a common feature of DMD, exacerbates this inflammation. Although corticosteroids are the conventional treatment, their adverse effects are substantial. The use of omega-3 polyunsaturated fatty acids (PUFAω-3) as adjuvant therapy is under investigation. A comprehensive review of studies from 2011 to May 2024 reveals that supplementation with PUFAω-3 has beneficial effects in mdx mice, a model of DMD. These include reduction of the inflammatory process in both muscle and circulation, in addition to decreased myonecrosis, resulting in improved muscle strength and endurance. Supplementation also had a positive impact on cardiac tissue, reducing fibrosis and inflammation present in this tissue. These results were corroborated in patients with DMD. A significant decrease in inflammatory markers such as NF-kB, IL-1β and IL-6 was observed with PUFAω-3, and an increase in the anti-inflammatory cytokine IL-10, suggesting a potential anti-inflammatory effect. These findings support the use of PUFAω-3 as adjuvant therapy in DMD, although further research is needed to fully understand its mechanisms and clinical benefits.
Salari N, Fatahi B, Valipour E, et al. Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):96. doi: 10.1186/s13018-022-02996-8.
Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7(1):13. doi: 10.1038/ s41572-021-00248-3.
Chang M, Cai Y, Gao Z, et al. Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol. 2023;270(8):3733-49. doi: 10.1007/s00415-023-11796-x.
Wu X, Dong N, Yu L, et al. Identification of immune-related features involved in Duchenne muscular dystrophy: A bidirectional transcriptome and proteome-driven analysis. Front Immunol. 2022;13:1017423. doi: 10.3389/fimmu.2022.1017423.
Rosenberg AS, Puig M, Nagaraju K, et al. Immune-mediated pathology in Duchenne muscular dystrophy. Sci Transl Med. 2015;7(299). doi: 10.1126/scitranslmed.aaa7322.
Collins RA, Grounds MD. The role of Tumor Necrosis Factor-alpha (TNF-α) in skeletal muscle regeneration: studies in TNF-α(-/-) and TNF-α(-/-)/LT-α(-/-) Mice. J Histochem Cytochem. 2001;49(8):989-1001. doi: 10.1177/002215540104900807.
Rodríguez-Cruz M, Sanchez R, Escobar RE, et al. Evidence of insulin resistance and other metabolic alterations in boys with Duchenne or Becker muscular dystrophy. I Int. J. Endocrinol. 2015;2015:1-8. doi: 10.1155/2015/867273.
Al-Roub A, Madhoun AA, Akhter N, et al. IL-1β and TNFα cooperativity in regulating IL-6 expression in adipocytes depends on CREB binding and H3K14 acetylation. Cells. 2021;19;10(11):3228. doi: 10.3390/ cells10113228.
Crupi R, Cuzzocrea S. Role of EPA in inflammation: mechanisms, effects, and clinical relevance. Biomolecules. 2022;12(2):242. doi: 10.3390/ biom12020242.
Machado RV, Mauricio AF, Taniguti APT, et al. Eicosapentaenoic acid decreases TNF-α and protects dystrophic muscles of mdx mice from degeneration. J Neuroimmunol. 2011;232(1-2):145-50. doi: 10.1016/j.jneuroim.2010.10.032.
De Carvalho SC, Matsumura CY, Santo-Neto H, et al. Identification of plasma interleukins as biomarkers for deflazacort and omega-3 based Duchenne muscular dystrophy therapy. Cytokine. 2018;102:55-61. doi: 10.1016/j.cyto.2017.12.006.
De Carvalho SC, Hindi SM, Kumar A, et al. Effects of omega-3 on matrix metalloproteinase-9, myoblast transplantation and satellite cell activation in dystrophin-deficient muscle fibers. Cell Tissue Res. 2017;369(3):591-602. doi: 10.1007/s00441-017-2640-x.
Fogagnolo-Mauricio A, Pereira JA, Santo-Neto H, et al. Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice hearts at later stages of dystrophy. Nutrition. 2016;32(7-8):855-62. doi: 10.1016/j.nut.2016.01.015.
Fogagnolo-Mauricio A, De Carvalho SC, Santo-Neto H, et al. Effects of dietary omega-3 on dystrophic cardiac and diaphragm muscles as evaluated by 1H magnetic resonance spectroscopy: Metabolic profile and calcium-related proteins. Clin. Nutr. ESPEN. 2017;20:60-7. doi: 10.1016/j.clnesp.2017.03.005.
Tripodi L, Molinaro D, Farini A, et al. Flavonoids and Omega3 prevent muscle and cardiac damage in Duchenne muscular dystrophy animal model. Cells. 2021;10(11):2917. doi: 10.3390/cells10112917.
Rodríguez-Cruz M, Cruz-Guzmán ODR, Almeida-Becerril T, et al. Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial. Clin Nutr. 2018;37(6):1840-51. doi: 10.1016/j.clnu.2017.09.011.
Villaldama‐Soriano MA, Rodríguez‐Cruz M, Hernández‐De La Cruz SY, et al. Pro‐inflammatory monocytes are increased in Duchenne muscular dystrophy and suppressed with omega‐3 fatty acids: A double‐blind, randomized, placebo‐controlled pilot study. Euro J of Neurology. 2022;29(3):855-64. doi: 10.1111/ene.15184.
Yannin Hernández-de La Cruz S, Ordaz-Robles T, Antonio Villaldama-Soriano M, et al. The muscle regeneration marker FOXP3 is associated with muscle injury in Duchenne muscular dystrophy. Brain Dev. 2024;46(5):199-206. doi: 10.1016/j.braindev.2024.02.001.
Sitzia C, Meregalli M, Belicchi M, et al. Preliminary evidences of safety and efficacy of flavonoids- and Omega 3-based compound for muscular dystrophies treatment: a randomized double-blind placebo controlled pilot clinical trial. Front Neurol. 2019;10:755. doi: 10.3389/fneur.2019.00755.
Rodríguez-Cruz M, Atilano-Miguel S, Barbosa-Cortés L, et al. Evidence of muscle loss delay and improvement of hyperinsulinemia and insulin resistance in Duchenne muscular dystrophy supplemented with omega-3 fatty acids: A randomized study. Clin Nutr. 2019;38(5):2087-97. doi: 10.1016/j.clnu.2018.10.017.
Pan L, Xie W, Fu X, et al. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021;154:111544. doi: 10.1016/j.exger.2021.111544.
Cruz-Guzmán ODR, Rodríguez-Cruz M, Escobar-Cedillo RE. Systemic inflammation in Duchenne muscular dystrophy: association with muscle function and nutritional status. Biomed Res Int. 2015;2015:1-7. doi: 10.1155/2015/891972.
Calder PC. Functional Roles of Fatty Acids and Their Effects on Human Health. J Parenter Enter Nutr. 2015;39(1S). doi: 10.1177/0148607115595980.
Kavyani Z, Musazadeh V, Fathi S, et al. Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: An umbrella meta-analysis. Int. Immunopharmacol. 2022;111:109104. doi: 10.1016/j.intimp.2022.109104.
De Senzi-Moraes PR, Ferretti R, Moraes LHR, et al. N-Acetylcysteine treatment reduces TNF-α levels and myonecrosis in diaphragm muscle of mdx mice. Clin Nutr. 2013;32(3):472-5. doi: 10.1016/j.clnu.2012.06.001.
Kumar L, Bisen M, Khan A, et al. Role of matrix metalloproteinases in musculoskeletal diseases. Biomedicines. 2022;10(10):2477. doi: 10.3390/ biomedicines10102477.
Pelosi L, Berardinelli MG, De Pasquale L, et al. Functional and morphological improvement of dystrophic muscle by interleukin 6 receptor blockade. EBioMedicine. 2015;2(4):285-93. doi: 10.1016/j.ebiom.2015.02.014.
Nagata Y, Kiyono T, Okamura K, et al. Interleukin-1beta (IL-1β)-induced Notch ligand Jagged1 suppresses mitogenic action of IL-1β on human dystrophic myogenic cells. PLoS ONE. 2017;12(12):e0188821. doi: 10.1371/journal. pone.0188821.
Yao S, Chen Z, Yu Y, et al. Current pharmacological strategies for Duchenne muscular dystrophy. Front Cell Dev Biol. 2021;9:689533. doi: 10.3389/fcell.2021.689533.
Han X, Han J, Wang N, et al. Identification of auxiliary biomarkers and description of the immune microenvironmental characteristics in Duchenne Muscular Dystrophy by bioinformatical analysis and experiment. Front Neurosci. 2022;16:891670. doi: 10.3389/fnins.2022.891670.
Ono E, Lenief V, Lefevre M, et al. Topical corticosteroids inhibit allergic skin inflammation but are ineffective in impeding the formation and expansion of resident memory T cells. Allergy. 2024;79(1):52-64. doi: 10.1111/all.15819.
Savino W, Pinto-Mariz F, Mouly V. Flow cytometry-defined CD49d expression in circulating T-lymphocytes is a biomarker for disease progression in Duchenne muscular dystrophy. Methods Mol Biol. 2018;1687:219-227. doi: 10.1007/978-1-4939-7374-3_16.
Shih JA, Folch A, Wong BL. Duchenne muscular dystrophy: the heart of the matter. Curr Heart Fail Rep. 2020;17(3):57-66. doi: 10.1007/s11897-020-00456-0.