ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Ácidos grasos poliinsaturados omega-3 en pacientes pediátricos con leucemia linfoblástica aguda / Omega-3 polyunsaturated fatty acids in pediatric patients with acute lymphoblastic leukemia

Sharon Berenice Morales-Montes, Salvador Atilano-Miguel, María de Lourdes Barbosa-Cortés

Resumen


 

Resumen

El interés en los ácidos grasos poliinsaturados de cadena larga omega-3 ha aumentado en los últimos años. Diversos estudios sugieren que la suplementación con estos ácidos grasos disminuye el riesgo metabólico, los niveles plasmáticos de triglicéridos y atenúan la pérdida de la masa magra, modulando la respuesta inflamatoria. En adultos con cáncer, los resultados de diferentes estudios que han evaluado los efectos de la administración de estos ácidos grasos sugieren que pueden ser utilizados como adyuvantes durante el tratamiento actuando como agonistas de receptores, modulando diferentes vías moleculares, reduciendo la respuesta inflamatoria, aumentando la eficacia de la quimioterapia y, en consecuencia, mejorando la supervivencia global de los pacientes con cáncer.  El papel de la nutrición en el tratamiento onco-hematológico no se ha comprendido lo suficiente, pese a que el estado nutricio es un factor pronóstico modificable. Actualmente, la evidencia que demuestra el efecto de la suplementación con estos ácidos grasos en pacientes pediátricos con leucemia es limitada y reportan beneficios relacionados con la preservación de la masa magra, control de dislipidemias, factores de riesgo cardiovascular y hepatotoxicidad por metotrexate durante la terapia. Por lo tanto, el objetivo de esta revisión es destacar los resultados de los estudios de intervención con estos ácidos grasos realizados en población pediátrica con leucemia linfoblástica aguda publicados hasta el momento.

 

Abstract

Interest in omega-3 long-chain polyunsaturated fatty acids has increased in recent years. Several studies suggest that supplementation with these fatty acids decreases metabolic risk, plasma triglyceride levels and attenuates the loss of lean body mass, modulating the inflammatory response. In adults with cancer, the results of different studies that have evaluated the effects of the administration of these fatty acids suggest that they can be used as adjuvants during treatment acting as receptor agonists, modulating different molecular pathways, reducing the inflammatory response, increasing the efficacy of chemotherapy and consequently improving the overall survival of cancer patients.  The role of nutrition in onco-hematological treatment has not been sufficiently understood, although nutritional status is a modifiable prognostic factor. Currently, the evidence demonstrating the effect of supplementation with these fatty acids in pediatric patients with leukemia is limited. It reports benefits related to the preservation of lean body mass, control of dyslipidemias, cardiovascular risk factors, and methotrexate hepatotoxicity during therapy. Therefore, this review highlights the results of intervention studies with these fatty acids performed in the pediatric population with acute lymphoblastic leukemia published so far.


Palabras clave


Leucemia-Linfoma Linfoblástico de Células Precursoras; Ácidos Grasos Omega-3; Suplementos Dietéticos; Factores de Riesgo de Enfermedad Cardiaca; Masa Magra / Precursor Cell Lymphoblastic Leukemia-Lymphoma; Fatty Acids, Omega-3; Dietary Supplements

Texto completo:

PDF

Referencias


 

Ward E, DeSantis C, Robbins A, et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2).

Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):2524.

Barbosa-Cortes L, Atilano-Miguel S, Martin-Trejo JA, et al. Effect of long-chain omega-3 polyunsaturated fatty acids on cardiometabolic factors in children with acute lymphoblastic leukemia undergoing treatment: a secondary analysis of a randomized controlled trial. Front Endocrinol (Lausanne). 2023;14.

Mogensen PR, Grell K, Schmiegelow K, et al. Dyslipidemia at diagnosis of childhood acute lymphoblastic leukemia. PLoS One. 2020;15(4).

Freitas RDS, Campos MM. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients. 2019;11.

Podpeskar A, Crazzolara R, Kropshofer G, et al. Omega-3 fatty acids and their role in pediatric cancer. Nutrients. 2021;13(6).

Shahidi F, Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology. 2018;9.

Watanabe Y, Tatsuno I. Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved. Journal of Atherosclerosis and Thrombosis. 2020;27.

Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sciences. 2018;203.

Calder PC. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions. 2017;45.

Orgel E, Sea JL, Mittelman SD. Mechanisms by which obesity impacts survival from acute lymphoblastic leukemia. J Natl Cancer Inst Monogr. 2019;2019(54).

Alan IS, Alan B. Side Effects of Glucocorticoids. In: Pharmacokinetics and Adverse Effects of Drugs - Mechanisms and Risks Factors. 2018.

Barbosa-Cortés L, Martínez-Vieyra X, Mejía-Aranguré JM, et al. Pilot study on the effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on body composition in children with acute lymphoblastic leukemia: randomized clinical trial. Clinical Nutrition. 2023;42(9).

Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol. 2013;380(1-2).

Gorjao R, dos Santos CMM, Serdan TDA, et al. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacology and Therapeutics. 2019;196.

Bayram I, Erbey F, Celik N, et al. The use of a protein and energy dense eicosapentaenoic acid containing supplement for malignancy-related weight loss in children. Pediatr Blood Cancer. 2009;52(5).

Sandhya L, Devi-Sreenivasan N, Goenka L, et al. Randomized Double-Blind Placebo-Controlled Study of Olanzapine for Chemotherapy-Related Anorexia in Patients With Locally Advanced or Metastatic Gastric, Hepatopancreaticobiliary, and Lung Cancer. Journal of Clinical Oncology. 2023;41(14).

Goncalves CG, Ramos EJB, Suzuki S, et al. Omega-3 fatty acids and anorexia. Current Opinion in Clinical Nutrition and Metabolic Care. 2005;8.

Zaid ZA, Shahar S, Jamal ARA, et al. Fish oil supplementation is beneficial on caloric intake, appetite and mid upper arm muscle circumference in children with leukaemia. Asia Pac J Clin Nutr. 2012;21(4).

Salvador C, Entenmann A, Salvador R, et al. Combination therapy of omega-3 fatty acids and acipimox for children with hypertriglyceridemia and acute lymphoblastic leukemia. J Clin Lipidol. 2018;12(5).

Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism: Clinical and Experimental. 2011;60.

Backes J, Anzalone D, Hilleman D, et al. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids in Health and Disease. 2016;15.

Laumann RD, Iversen T, Mogensen PR, et al. Effect of Fish Oil Supplementation on Hyperlipidemia during Childhood Acute Lymphoblastic Leukemia Treatment–A Pilot Study. Nutr Cancer. 2021;73(9).

Sherratt SCR, Libby P, Budoff MJ, et al. Role of Omega-3 Fatty Acids in Cardiovascular Disease: the Debate Continues. Current Atherosclerosis Reports. 2023;25.

Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA - Journal of the American Medical Association. 2020;324(22).

Wu B Bin, Leung KT, Poon ENY. Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. International Journal of Molecular Sciences. 2022;23.

Uygur R, Aktas C, Tulubas F, et al. Cardioprotective effects of fish omega-3 fatty acids on doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol. 2014;33(4).

Xue H, Ren W, Denkinger M, et al. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ‰-3 Polyunsaturated Fatty Acids. Journal of Parenteral and Enteral Nutrition. 2016;40(1).

El Amrousy D, El-Afify D, Khedr R, et al. Omega 3 fatty acids can reduce early doxorubicin-induced cardiotoxicity in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2022;69(7).

Hagag A, AbdElaal A, Elfaragy M, et al. Therapeutic Value of Black Seed Oil in Methotrexate Hepatotoxicity in Egyptian Children with Acute Lymphoblastic Leukemia. Infect Disord Drug Targets. 2015;15(1).

Elbarbary NS, Ismail EAR, Farahat RK, et al. ω-3 fatty acids as an adjuvant therapy ameliorates methotrexate-induced hepatotoxicity in children and adolescents with acute lymphoblastic leukemia: A randomized placebo-controlled study. Nutrition. 2016;32(1).

Abdelaziz RM, Abdelazem AZ, Hashem KS, et al. Protective effects of hesperidin against MTX-induced hepatotoxicity in male albino rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(8).

Liu Y, Lin J, Chen Y, et al. Omega-3 polyunsaturated fatty acids inhibit IL-11/STAT3 signaling in hepatocytes during acetaminophen hepatotoxicity. Int J Mol Med. 2021;48(4).




DOI: https://doi.org/10.24875/10.5281/zenodo.14199883

Enlaces refback

  • No hay ningún enlace refback.