ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Hipovitaminosis D y marcadores bioquímicos del metabolismo óseo en niños con leucemia / Hypovitaminosis D and biochemical parameters of bone metabolism in children with leukemia

María de Lourdes Barbosa-Cortés, Salvador Atilano-Miguel, Víctor Manuel Cortés-Beltrán, Sharon Berenice Morales-Montes, Jorge Alfonso Martin-Trejo, Jorge Maldonado-Hernández, Juan Manuel Domínguez-Salgado

Resumen


 

Resumen

Introducción: la 25 hidroxivitamina D (25(OH)D) desempeña un papel fundamental en el mantenimiento de la salud ósea. El tratamiento del paciente pediátrico con leucemia linfoblástica aguda (LLA), tiene un efecto negativo sobre el metabolismo óseo.

Objetivo: describir la frecuencia de hipovitaminosis D y los cambios en las concentraciones séricas de 25(OH)D, marcadores bioquímicos y hormonales del metabolismo óseo entre el diagnóstico y la remisión.

Material y métodos: estudio de cohorte, longitudinal, prospectivo, en pacientes pediátricos (4-17 años) con diagnóstico de LLA de novo de células B y sin tratamiento previo. Se tomó una muestra de sangre periférica para determinar las concentraciones de 25(OH)D, hormona paratiroidea (PTH), fósforo y calcio iónico.  

Resultados: se incluyeron 40 pacientes, se presentaron 7 pérdidas durante el seguimiento, por lo que sólo se analizaron 33. El 91% de los niños presentaron hipovitaminosis D. Observamos un incremento de las concentraciones del calcio iónico con respecto a los niveles basales (1.1 mmol/L frente a 1.2 mmol/L, p = 0.002). El análisis de los Δ de las concentraciones séricas de PTH y 25(OH)D mostró una relación inversa (rho = -0.397, p = 0.024).

Conclusiones: estos hallazgos confirman una alta frecuencia de hipovitaminosis D. Niveles bajos de 25(OH)D pueden comprometer la absorción de calcio y generar un aumento compensatorio de PTH.

 

Abstract

Introduction: 25(OH)D is key for maintaining bone health. Treatment of pediatric patients with acute lymphoblastic leukemia (ALL) has a negative effect on bone metabolism.

Objective: To describe the frequency of hypovitaminosis D, changes in serum 25(OH)D concentrations, and the biochemical and hormonal markers of bone metabolism between diagnosis and referral in children with ALL.

Material and methods: Prospective, longitudinal, cohort study in pediatric patients (4-17 years) with newly diagnosed B-cell ALL, and without treatment. Patients were summoned under fasting conditions, and a peripheral blood sample was taken to determine 25(OH)D, parathyroid hormone (PTH), phosphorus, and ionic calcium concentrations.

Results: Of the 40 patients recruited, 7 were lost to follow-up, so only 33 were analyzed. 91% of the children had hypovitaminosis D. We observed a significant increase in ionic calcium concentrations from baseline levels (1.1 mmol/L vs. 1.2 mmol/L, p = 0.002). Analysis of the Δ of serum PTH and 25(OH)D concentrations showed an inverse relationship (rho = -0.397, p = 0.024).

Conclusions: These findings confirm a high frequency of hypovitaminosis D. Low 25(OH)D levels may compromise calcium absorption and generate a compensatory increase in PTH.


Palabras clave


Deficiencia de Vitamina D; Leucemia-Linfoma Linfoblástico de Células Precursoras; Niño; Hormona Paratiroidea; Fósforo / Vitamin D Deficiency; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Child; Parathyroid Hormone; Phosphorus

Texto completo:

PDF

Referencias


Cancer Statistics Review, 1975-2014 - SEER Statistics. Available from: https://seer.cancer.gov/archive/csr/1975_2014/index.htm.

Mostoufi-Moab S, Ward LM. Skeletal Morbidity in Children and Adolescents during and following Cancer Therapy. Hormone Research in Paediatrics. 2019;91(2):137-151. doi: 10.1159/000494809.

Cummings EA, Ma J, Fernandez C V, et al. Incident vertebral fractures in children with leukemia during the four years following diagnosis. Journal of Clinical Endocrinology and Metabolism. 2015;100(9):3408-17. doi: 10.1210/JC.2015-2176.

Van Der Sluis IM, Van Den Heuvel-Eibrink MM, Hählen K, et al. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. Journal of Pediatrics. 2002;141(2):204-10. doi:

Halton J, Gaboury I, Grant R, et al. Advanced Vertebral Fracture among Newly Diagnosed Children with Acute Lymphoblastic Leukemia: Results of the Canadian STeroid-associated Osteoporosis in the Pediatric Population (STOPP) Research Program. J Bone Miner Res. 2009;24(7):1326-34. doi: 10.1359/jbmr.090202.

Ward LM, Ma J, Lang B, et al. Bone Morbidity and Recovery in Children With Acute Lymphoblastic Leukemia: Results of a Six-Year Prospective Cohort Study. Journal of Bone and Mineral Research. 2018;33(8):1435-1443. doi: 10.1002/jbmr.3447.

te Winkel ML, Pieters R, Hop WCJ, et al. Bone mineral density at diagnosis determines fracture rate in children with acute lymphoblastic leukemia treated according to the DCOG-ALL9 protocol. Bone. 2014; 59:223-8. doi: 10.1016/j.bone.2013.11.017.

Bloomhardt HM, Sint K, Ross WL, et al. Severity of reduced bone mineral density and risk of fractures in long-term survivors of childhood leukemia and lymphoma undergoing guideline-recommended surveillance for bone health. Cancer. 2020;126(1) :202-210. doi: 10.1002/cncr.32512.

Roth DE, Abrams SA, Aloia J, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low-and middle-income countries. Ann N Y Acad Sci. 2018;1430(1) :44-79. doi: 10.1111/nyas.13968.

Ferrari S, Bianchi ML, Eisman JA, et al. Osteoporosis in young adults: Pathophysiology, diagnosis, and management. Osteoporosis International. 2012; 23(12):2735-48. doi: 10.1007/s00198-012-2030-x.

Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets. Hormone Research in Paediatrics. 2016; 101(2):394-415. doi: 10.1210/jc.2015-2175.

Leung EKY. Parathyroid hormone. In: Advances in Clinical Chemistry. 2021; 101:41-93. doi: 10.1016/bs.acc.2020.06.005.

Maddheshiya S, Singh SK, Kumar I, et al. Bone Mineral Metabolism during Chemotherapy in Childhood Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol. 2021;43(5):172-175. doi: 10.1097/MPH.0000000000001908.

De Onis M, Onyango AW, Borghi E, et al. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9): 660-7. doi: 10.2471/blt.07.043497.

van den Ouweland JMW, Beijers AM, Demacker PNM, et al. Measurement of 25-OH-vitamin D in human serum using liquid chromatography tandem-mass spectrometry with comparison to radioimmunoassay and automated immunoassay. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(15-16):1163-8. doi: 10.1016/j.jchromb.2010.03.035.

Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism. 2011;96(7):1911-30. doi: 10.1210/jc.2011-0385.

Flores M, Rivera M, Valdez A, et al. Vitamin D status in Mexican children 1 to 11 years of age: an update from the Ensanut 2018-19. 2021;63:382-393. doi: 10.21149/12156.

Naz A. Vitamin D levels in patients of acute leukemia before and after remission-induction therapy. Pak J Med Sci. 2012;29(1):10-4. doi: 10.12669/pjms.291.2764.

Bhattacharya S, Verma N, Kumar A. Prevalence of vitamin D deficiency in childhood acute lymphoblastic leukemia and its association with adverse outcomes during induction phase of treatment. Nutr Cancer. 2020;72(8):1321-1325. doi: 10.1080/01635581.2019.1679196.

Demirsoy U, Sarper N, Aylan Gelen S, et al. The Association of Oral Vitamin D and Calcium Supplementation with Bone Mineral Density in Pediatric Acute Lymphoblastic Leukemia Patients. J Pediatr Hematol Oncol. 2017;39(4):287-292. doi: 10.1097/MPH.0000000000000797.

Solmaz I, Ozdemir MA, Unal E, et al. Effect of vitamin K2 and vitamin D3 on bone mineral density in children with acute lymphoblastic leukemia: A prospective cohort study. Journal of Pediatric Endocrinology and Metabolism. 2021;34(4):441-447. doi: 10.1515/jpem-2020-0637.

Athanassiadou F, Tragiannidis A, Rousso I, et al. Evaluation of bone metabolism in children with acute lymphoblastic leukemia after induction chemotherapy treatment. Pediatr Hematol Oncol. 2005;22(4):285-9. doi: 10.1080/08880010590935176.

Meleleo D, Picciarelli V. Effect of calcium ions on human calcitonin. Possible implications for bone resorption by osteoclasts. BioMetals. 2016;29(1):61-79. doi: 10.1007/s10534-015-9896-y.

Hintzpeter B, Scheidt-Nave C, Müller MJ, et al. Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. Journal of Nutrition. 2008;138(8):1482-90. DOI: 10.1093/jn/138.8.1482.

Ross AC, Manson JE, Abrams SA, et al. The 2011 Dietary Reference Intakes for Calcium and Vitamin D: What Dietetics Practitioners Need to Know. J Am Diet Assoc. 2011;111(4):524-7. DOI: 10.1016/j.jada.2011.01.004.

van Atteveld JE, Pluijm SMF, Ness KK, et al. Prediction of low and very low bone mineral density among adult survivors of childhood cancer. Journal of Clinical Oncology. 2019;37(25):2217-2225. DOI: 10.1200/JCO.18.01917.

Kaste SC, Jones-Wallace D, Rose SR, et al. Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: Frequency of occurrence and risk factors for their development. Leukemia. 2001;15(5):728-34. DOI: 10.1038/sj.leu.2402078.




DOI: https://doi.org/10.24875/10.5281/zenodo.14199833

Enlaces refback

  • No hay ningún enlace refback.