Resumen
Introducción: el ácido docosahexaenoico (DHA) y el ácido araquidónico (AA) son ácidos grasos que forman parte de la leche materna. Sus concentraciones dependen de la dieta y del suministro endógeno materno, pero con frecuencia no se alcanzan los niveles recomendados.
Objetivo: sustentar con evidencia los beneficios y recomendaciones de DHA y AA para el lactante, en el embarazo y lactancia materna.
Material y métodos: revisión narrativa. Se realizaron búsquedas con palabras clave: recomendaciones, inflamación, inmunidad, ácidos grasos, omega-3, DHA, leche materna, pretérmino, embarazo, recién nacido y suplementación; así como LC-PUFA, human milk, preterm, immunity, DHA, pregnancy, supplementation y recommendations, desde el año 2020 hasta el 2024. Si no había información correspondiente a ese periodo se reportó la referencia más actualizada.
Resultados: recomendaciones de DHA durante embarazo y lactancia: 200-450 mg/día; si en el embarazo hay bajas reservas de DHA, administrar 1000 mg/día. En el niño pretérmino: 30-100 mg de AA/kg/día y 30-65 mg de DHA/kg/día. Lactante de 7-23 meses: 100 mg de DHA/kg/día. Cubrir el aporte mediante alimentos o suplementos durante la gestación y posnacimiento mejoran el desarrollo y funcionamiento del sistema inmune, cerebral y visual en el niño; asimismo, se modula la respuesta inflamatoria y se reduce el riesgo de nacimiento pretérmino y de enfermedades neonatales.
Conclusiones: cubrir el aporte de DHA y AA favorece el desarrollo óptimo y puede prevenir enfermedades en el niño.
Abstract
Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are fatty acids, part of the human milk composition. Their concentrations depend on maternal diet and endogenous supply, but recommended levels are not often reached.
Objective: Support with evidence the DHA and AA benefits and recommendations for the infant, during pregnancy and breastfeeding.
Material and methods: Narrative review. Search was made using the keywords: recomendaciones, inflamación, inmunidad, ácidos grasos, omega-3, DHA, leche materna, pretérmino, embarazo, recién nacido, suplementación; as well LC-PUFA, human milk, preterm, immunity, DHA, pregnancy, supplementation, recommendations, from 2020-2024; if there was no information in this period, the up-to-date reference was reported.
Results: DHA recommendations during pregnancy and breastfeeding: 200-450 mg/day; if the DHA tissue reserve was low in pregnancy, administer 1,000 mg/day. In the preterm infant: 30-100 mg of AA/kg/day; 30-65 mg of DHA/kg/day. Infant 7-23 months 100 mg of DHA/kg/day. Covering the supply through food or supplements during gestation and after birth improves the development and functioning of the immune, brain, and visual systems in the child, modulates the inflammatory response, and reduces the risk of premature birth and neonatal diseases.
Conclusion: Assuring the DHA and AA supply promotes optimal development and may prevent diseases in the infant.
Nevins JEH, Donovan SM, Snetselaar L et al. Omega-3 fatty acid dietary supplements consumed during pregnancy and lactation and child neurodevelopment: A systematic review. J Nutr. 2021;151(11):3483-94. doi: 10.1093/jn/nxab238.
Miles EA, Childs CE, Calder PC. Long-chain polyunsaturated fatty acids (LCPUFAs) and the developing immune system: A narrative review. Nutrients. 2021;13(1):247. doi: 10.3390/nu13010247.
Fu Y, Liu X, Zhou B et al. An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. Public Health Nutr. 2016;19(15):2675-87. doi: 10.1017/s1368980016000707.
Hellstrom A, Hellstrom W, Hellgren G et al. Docosahexaenoic acid and arachidonic acid levels are associated with early systemic inflammation in extremely preterm infants. Nutrients. 2020;12:1996. doi: 10.3390/nu12071996.
Martinat M, Rossitto M, Di Miceli M et al. Perinatal dietary polyunsaturated fatty acids in brain development, role in neurodevelopmental disorders. Nutrients. 2021;13(4):1185. doi: 10.3390/nu13041185.
Basak S, Mallick R, Duttaroy AK. Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment. Nutrients. 2020; 12:3615. doi: 10.3390/nu12123615.
Wu WC, Lin HC, Liao WL et al. FADS genetic variants in taiwanese modify association of DHA intake and its proportions in human milk. Nutrients. 2020;12: 543. doi: 10.3390/nu12020543.
Uauy R, Mena P, Wegher B et al. Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res. 2000;47(1):127-7. doi: 10.1203/00006450-200001000-00022.
Wendel K, Gunnarsdottir G, Fossan Aas M et al. Essential fatty acid supplementation and early inflammation in preterm infants: Secondary analysis of a randomized clinical trial. Neonatology. 2023; 120(4):465-72. doi: 10.1159/000530129.
Redruello-Requejo M, Samaniego-Vaesken M de L, Puga AM, et al. Omega-3 and omega-6 polyunsaturated fatty acid intakes, determinants and dietary sources in the spanish population: Findings from the ANIBES study. Nutrients. 2023;15:562. doi: 10.3390/nu15030562.
Bernabe García M, Calder PC, Villegas Silva R et al. Efficacy of docosahexaenoic acid for the prevention of necrotizing enterocolitis in preterm infants: A randomized clinical trial. Nutrients. 2021;13: 648. doi: 10.3390/nu13020648.
Bernabe García M, Villegas Silva R, Villavicencio Torres A et al. Enteral docosahexaenoic acid and retinopathy of prematurity: A randomized clinical trial. J Parenter Enter Nutr. 2019; 43 (7), 874-882. doi: 10.1002/jpen.1497.
Hellstrom A, Pivodic A, Granse L et al. Association of docosahexaenoic acid and arachidonic acid serum levels with retinopathy of prematurity in preterm infants. JAMA. 2021; 4(10): e2128771. doi: 10.1001/jamanetworkopen.2021.28771.
Bernabe García M, López Alarcón M, Salgado Sosa A et al. Enteral docosahexaenoic acid reduces analgesic administration in neonates undergoing cardiovascular surgery. Ann Nutr Metab. 2016; 69:150-160. doi: 10.1159/000452227.
López Alarcón M, Bernabe García M, Del Valle O et al. Oral administration of docosahexaenoic acid attenuates interleukin-1β response and clinical course of septic neonates. Nutrition. 2012; 28, 384-390. doi: 10.1016/j.nut.2011.07.016.
Salem N Jr, Van Dael P. Arachidonic acid in human milk. Nutrients. 2020;12(3):626. doi: 10.3390/nu12030626.
Di Benedetto MG, Bottanelli C, Cattaneo A et al. Nutritional and immunological factors in breast milk: A role in the intergenerational transmission from maternal psychopathology to child development. Brain Behav Immun. 2020; 85:57-68. doi: 10.1016/j.bbi.2019.05.032.
Marine Oils [Internet]. PubMed. Bethesda (MD): National Library of Medicine (US); 2023. ID: NBK501898. Fecha de actualización 15 de noviembre 2023. Fecha de consulta 1 de agosto, 2024. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK501898/.
Khandelwal S, Kondal D, Gupta R et al. Docosahexaenoic acid supplementation in lactating women increases breast milk and erythrocyte membrane docosahexaenoic acid concentrations and alters infant n-6:n-3 fatty acid ratio. Curr Dev Nutr. 2023;7(10):102010-0. doi: 10.1016/j.cdnut.2023.102010.
Patro-Golab B, Zalewski BM, Kammermeier M et al. Current guidelines on fat intake in pregnant and lactating women, infants, children, and adolescents: A scoping review. Ann Nutr Metab. 2023;80(1):1-20. doi: 10.1159/000535527.
Best KP, Gibson RA, Makrides M. ISSFAL statement number 7 - Omega-3 fatty acids during pregnancy to reduce preterm birth. Prostaglandins Leukot Essent Fat Acids. 2022;186:102495. doi: 10.1016/j.plefa.2022.102495
Puca D, Estay P, Valenzuela C et al., Efecto de la suplementación con omega-3 durante la gestación y la lactancia sobre la composición de ácidos grasos de la leche materna en los primeros meses de vida: una revisión narrativa. Nutr Hosp. 2021;38(4):848-856. doi: 0.20960/nh.0348
Embleton ND, Moltu SJ, Lapillonne A, et al. Enteral nutrition in preterm infants (2022): A position paper from the ESPGHAN Committee on Nutrition and invited experts. J Pediatr Gastroenterol Nutr. 2023;76(2). doi: 10.1097/mpg.0000000000003642.
U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020-2025. 9th Edition. Fecha de actualización, diciembre 2020. Fecha de consulta 1 de agosto, 2024. Disponible en DietaryGuidelines.gov.
EFSA. Dietary Reference Values for nutrients Summary report. EFSA Supporting Publications. 2017 Dec;14(12).
Center for Food Safety and Applied Nutrition. Advice about eating fish [Internet]. U.S. Food and Drug Administration. Fecha de actualización octubre 2021. Fecha de consulta 30 de agosto, 2024. Disponible en: https://www.fda.gov/media/102331/download
Kupsco A, Lee JJ, Prada D, et al. Marine pollutant exposures and human milk extracellular vesicle-microRNAs in a mother-infant cohort from the Faroe Islands. Environ Int. 2022;158:106986. doi: 10.1016/j.envint.2021.106986.
Hmila I, Hill J, Shalaby KE et al. Perinatal exposure to PFOS and sustained high-fat diet promote neurodevelopment disorders via genomic reprogramming of pathways associated with neuromotor development. Ecotoxicol Environ Saf. 2024; 272: 116070-0. doi: 10.1016/j.ecoenv.2024.116070.
Castro González MI, Maafs Rodríguez AG, Galindo Gómez C. Perfil de ácidos grasos de diversas especies de pescados consumidos en México. Rev Biol Trop. 2013; 61(4):1981-98.
Rizzo G, Baroni L, Lombardo M. Promising sources of plant-derived polyunsaturated fatty acids: A narrative review. Int J Environ Res Public Health. 2023;20(3):1683-3. doi: 10.3390/ijerph20031683