En esta revisión se describen varias características del proceso de envejecimiento y de manera resumida algunas de las teorías que intentan explicarlo y, si bien ninguna es totalmente satisfactoria, pueden actuar entre sí de una manera compleja; en ellas, la senescencia celular es el factor común. Las alteraciones moleculares se llevan a cabo tanto a nivel genético como epigenético y varios estudios asocian la senescencia con cambios en la condensación de la cromatina, los cuales están regulados por factores epigenéticos y otros; en esos estudios se considera que los radicales libres representan un mecanismo útil para explicar el envejecimiento y los trastornos relacionados con la edad y que en forma conjunta, con las alteraciones en la homeostasis de la mitocondria, promueven el envejecimiento por daño acumulado a través del tiempo.
Alvarado-García AM, Salazar-Maya AM. Análisis del concepto de envejecimiento. Gerokomos. 2014;25(2):57-62.
Wheeler HE, Kim SK. Genetics and genomics of human aging. Philos Trans R Soc Lond B Biol Sci 2011;366(1561):43-50.
Fernández Mayoralas G, Rojo F, Abellán A, Rodríguez V. Envejecimiento y salud. Diez años de investigación en el CSIC. Revista multidisciplinar de gerontología 2003;13:43-46.
Goldstein JR, Cassidy T. How slowing senescence changes life expectancy. MPIDR Working paper WP 2010-006. Max Planck Institute for Demographic Research. Rostock, Germany, 2010.
Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 2013;75:621-644.
Caino MC, Meshki EJ, Kazanietz MG. Hallmarks for senescence in carcinogenesis: novel signaling players. Apoptosis 2009;14:392-408.
Saretzki MG. Cellular senescence in the development and treatment of cancer. Curr Pharm Des 2010;16(1):79-100.
Lechel A, Satyanarayana A, Ju Z, Plentz RR, Schaetzlein S, Rudolph C, et al. The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo. EMBO Rep 2005;6(3):275-81.
Hwang ES, Yoon G, Kang HT. A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 2009;66:2503-24.
Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007;27(6):2343-58.
Heffner KL. Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol Allergy Clin North Am 2011;31(1):95-108.
Oliveira BF, Nogueira-Machado JA, Chaves MM. The role of oxidative stress in the aging process. Scientific World Journal 2010;10:1121-8.
Jacob KD, Noren Hooten N, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age related disease. Mech Aging Dev 2013;134(3-4):139-57.
Mateos R, Bravo L. Chromatographic and electrophoretic methods for the analysis of biomarkers of oxidative damage to macromolecules (DNA, lipids, and proteins). J Sep Sci 2007;30(2):175-91.
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, et al. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev. 2012;11(1):51-66.
Henriksen T, Hillestrom PR, Poulsen HE, Weimann A. Automated method for the direct analysis of 8-oxo-guanosine and 8-oxo-2’-deoxyguanosine in human urine using ultra-performance liquid chromatography and tandem mass spectrometry. Free Radic Biol Med. 2009;47(5):629-35.
Broedbaek K, Ribel-Madsen R, Henriksen T, Weimann A, Petersen M, Andersen JT, et al. Genetic and environmental influences on oxidative damage assessed in elderly Danish twins. Free Radic Biol Med. 2011;50(11):1488-91.
Meng J, Lv Z, Qiao X, Li X, Li Y, Zhang Y, Chen CH. The decay of redox-stress response capacity is a substantive characteristic of aging: Revising the redox theory of aging. Redox Biology. 2017;11:365-74.
Miquel J, Economos AC, Fleming J, Johnson JE Jr. Mitochondrial role in cell aging. Experimental Gerontology. 1980;15:579-91.
Seo AY, Joseph AM, DuttaD, Hwang JC, Aris JP, Leeuwenburgh C, et al. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 2010;123:2533-42.
Yoon Y, Galloway CA, Jhun BS, Yu T. Mitochondrial dynamics in diabetes. Antioxid Redox Signal. 2011;14(3):439-57.
Opesko P, Shay J. Telomere-associated aging disorders. Aging Research Reviews. 2017;33:52-66.
Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91(5):1273-80.
Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev. 2012;11(3):404-20.
Chercas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154-8.
Savela S, Saijonmaa O, Strandberg TE, Koistinen P, Strandberg AY, Tilvis RS, et al. Physical activity in midlife and telomere length measured in old age. Experimental Gerontology. 2013;48:81-4.
Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitka la KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen study. Eur J Epidemiol. 2012;27:815-22.
Mather J, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. J Gerontol Biol Sci Med. 2011;61:871-3.
Valdes A M, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarrete smoking, and telomere lenght in women. Lancet. 2005; 366(9486):662-4.
Walters MS, De BP, Salit J, Buro-Auriemma LJ, Wilson T, Rogalski AM, et al. Smoking accelerates aging of the small airway epithelium. Respir Res. 2014;15:94.
Foley DL, Craig JM, Morley R, Oldsson CA, Dwyer T, Smith K, et al. Prospects for epigenetic epidemiology. Am J Epidemiol. 2009;169(4):389-400.
Ghavifekr Fakhr M, Farshdousti Hagh M, Shanehbandi D, Baradaran B. DNA methylation pattern as important epigenetic criterion in cancer. Genet Res Int. 2013;2013:317569.
Halley-Stott RP, Gurdon JB. Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics. 2013;12(3):164-73.
Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11:694-703.
Grolleau-Julius A, Ray D, Yung RL. The role of epigenetics in aging and autoimmunity. Clin Rev Allergy Immunol. 2010;39(1):42-50.
Cobiac L. Epigenomics and nutrition. Forum Nutr. 2007;60:31-41.
Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkoy A. Genetics and epigenetics of aging and longevity. Cell Cycle. 2014;13(7):1063-77.
Han S, Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012; 22:42-49.
Choi JD, Lee JS. Interplay between epigenetics and genetics in cancer. Genomics Inform. 2013;11(4):164-73.
Bjornsson HT, Siqurdsson MI, Fallin MD, Irizarri RA, Aspelund T, Cui H, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299(24):2877-83.
Richardson B. Impact of aging on DNA methylation. Ageing Res Rev. 2003;2:245-61.
Yung RL, Julius A. Epigenetics, aging, and autoimmunity. Autoimmunity. 2008;41(4):329-35.
Manosalva I, Gonzalez A. Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology. 2010;74(9):1539-47.
Zaidi SK, Van Wijnen AJ, Lian JB, Stein JL, Stein GS. Targeting deregulated epigenetic control in cancer. J Cell Physiol. 2013;228:2103-8.
Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, et al. Altered histone acetylation is associated with age dependent memory impairment in mice. Science. 2010;328:753-6.
Krishnan V, Chow MZ, Wang Z, Zhang L, Liu B, Liu X, et al. Histone H4 Lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA. 2011;108(30):12325-30.