ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Concordancia entre técnicas de composición corporal en niños y adolescentes: revisión narrativa de la literatura / Agreement between body composition techniques in children and adolescents: narrative review of the literature

Andrés Hernández-Ortega, Iván Armando Osuna-Padilla

Resumen


Resumen

El monitoreo de la composición corporal (CC) permite comprender los efectos de la dieta, el ejercicio físico, la presencia de procesos patológicos y el crecimiento en las reservas corporales; de ahí la importancia de su determinación con técnicas exactas y reproducibles. El objetivo de la presente revisión es analizar la concordancia entre las distintas técnicas para evaluar la CC en población infantil y adolescente. Se realizó una búsqueda no sistemática de la literatura en las bases de datos PubMed, Scielo y Google Scholar para identificar estudios cuyo objetivo primario fuera la evaluación de la concordancia entre dos o más métodos de determinación de la CC. Se incluyeron 30 estudios para la revisión. Los métodos identificados para la medición de la CC fueron la absorciometría dual de rayos X, la pletismografía de gases (BOD-POD), la hidrodensitometría, la dilución de deuterio (D2O) y el modelo de cuatro compartimentos, utilizando bioimpedancia eléctrica y antropometría para la estimación. La concordancia y la correlación entre métodos varía según los diferentes grupos poblacionales y la técnica utilizada como método de referencia. Se concluye que existe una baja concordancia entre los distintos métodos para evaluar la composición corporal. La interpretación de la correlación y la concordancia de los diferentes métodos resulta esencial para evaluar la CC en niños y adolescentes. Se sugiere utilizar ecuaciones desarrolladas o validadas para el grupo en estudio.

 

Abstract

Body composition monitoring is important to understand the effect of diet, physical activity, illness and growth on body stores. Body composition determination by accuracy and reproducibility techniques is essential. The objective of this study was to analyze the agreement between body composition techniques in children and adolescents. Literature search was performed using the PubMed, Scielo and Google Scholar databases. Only observational studies realized in children and adolescents that analyze agreement between two or more body composition techniques were included. Thirty studies were included. Dual-energy X-ray absorptiometry, air displacement plethysmography, hydrodensitometry, deuterium dilution and four compartment model were the techniques for body composition measurement and bioelectrical impedance and anthropometry were used to estimate body composition. Agreement and correlation between methods was influenced by study populations and by technique considered as gold standard for comparisons. In conclusion, there is a low agreement between the different methods to assess body composition. Correlation and agreement interpretation are essential for body composition assessment in children and adolescents. Is recommended the use of equations developed and validated in this populations.


Palabras clave


Composición Corporal; Evaluación Nutricional; Adolescente; Niño / Body Composition; Nutrition Assessment; Adolescent; Child

Texto completo:

PDF HTML PubMed

Referencias


Curilem Gatica C, AlmagiàFlores A, Rodríguez Rodríguez F, et al. Evaluación de la composición corporal en niños y adolescentes:directrices y recomendaciones. Nutr Hosp. 2016;33(3):734-8. doi:10.20960/nh.285

 

Kyle UG, Earthman CP, Pichard C, Coss-Bu JA. Body composition during growth in children:limitations and perspectives of bioelectrical impedance analysis. Eur J Clin Nutr. 2015;69(12):1298-305. doi:10.1038/ejcn.2015.86

 

Wells JCK, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006;91(7):612-7. doi:10.1136/adc.2005.085522

 

Weber DR, Leonard MB, Zemel BS. Body composition analysis in the pediatric population. Pediatr Endocrinol Rev. 2012;10(1):130-9.

 

Fosbøl MØ, Zerahn B. Contemporary methods of body composition measurement. Clin Physiol Funct Imaging. 2015;35(2):81-97. doi:10.1111/cpf.12152.

 

González Jiménez E. Composición corporal:estudio y utilidad clínica. Endocrinol Nutr. 2013;60(2):69-75. doi:10.1016/j.endonu.2012.04.003

 

Maffeis C, Morandi A. Body composition and insulin resistance in children. Eur J Clin Nutr. 2018;72(9):1239-45. doi:10.1038/s41430-018-0239-2

 

Cortés-Reyes E, Rubio-Romero JA, Gaitán-Duarte H. Métodos estadísticos de evaluación de la concordancia y la reproducibilidad de pruebas diagnósticas. Revista Colombiana de Obstetricia y Ginecología. 2010;61:247-55.

 

Lorente-Ramos RM, Azpeitia-Armán J, Arévalo-Galeano N, Muñoz-Hernández A, García-Gómez JM, Gredilla-Molinero J. Absorciometría con rayos X de doble energía. Fundamentos, metodología y aplicaciones clínicas. Radiologia. 2012;54(5):410-23. doi:10.1016/j.rx.2011.09.023

 

Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101-5. doi:10.1016/j.bone.2017.06.010

 

Lemos T, Gallagher D. Current body composition measurement techniques. Curr Opin Endocrinol Diabetes Obes. 2017;24(5):310-4. doi:10.1097/MED.0000000000000360

 

Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children:a review. Am J Clin Nutr. 2002;75(3):453-67. doi:10.1093/ajcn/75.3.453

 

Andreoli A, Garaci F, Cafarelli FP, Guglielmi G. Body composition in clinical practice. Eur J Radiol. 2016;85(8):1461-8. doi:10.1016/j.ejrad.2016.02.005

 

Bila WC, Lamounier JA, Freitas AE de, Silva VR, Turani SD, Oliveira JED de. Stable isotopes and body composition in children:history, fundamentals, and clinical applications. Health. 2013;5:61-68. doi:10.4236/health.2013.58A3009

 

Ward LC. Bioelectrical impedance analysis for body composition assessment:reflections on accuracy, clinical utility, and standardisation. Eur J Clin Nutr. 2019;73(2):194-9. doi:10.1038/s41430-018-0335-3

 

Baracos V, Caserotti P, Earthman CP, et al. Advances in the science and application of body composition measurement. JPEN J Parenter Enteral Nutr. 2012;36(1):96-107. doi:10.1177/014↟111417448

 

Thibault R, Genton L, Pichard C. Body composition:why, when and for who?Clin Nutr. 2012;31(4):435-47. doi:10.1016/j.clnu.2011.12.011

 

Sheean P, Gonzalez MC, Prado CM, McKeever L, Hall AM, Braunschweig CA. American Society for Parenteral and Enteral Nutrition Clinical Guidelines:the validity of body composition assessment in clinical populations. JPEN J Parenter Enteral Nutr. 2020;44(1):12-43. doi:10.1002/jpen.1669

 

Ceniccola GD, Castro MG, Piovacari SMF, et al. Current technologies in body composition assessment:advantages and disadvantages. Nutrition. 2019;62:25-31.

 

Carrasco JL, Jover L. Statistical approaches to evaluate agreement. Med Clin. 2004;122(Suppl 1):28-34. doi:10.1157/13057543

 

Mukaka M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69-71.

 

Snik DAC, de Roos NM. Criterion validity of assessment methods to estimate body composition in children with cerebral palsy:a systematic review. Ann Phys Rehabil Med. 2019 May 31;S1877-0657(19)30069-7. doi:10.1016/j.rehab.2019.05.003. Online ahead of print.

 

Kottner J, AudigéL, Brorson S, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96-106. doi:10.1016/j.jclinepi.2010.03.002

 

Vásquez F, Díaz E, Lera L, Vásquez L, Anziani A, Burrows R. Métodos de composición corporal y modelo de cuatro compartimentos en escolares obesos chilenos. Nutri Hosp. 2012;27(4):1079-85. doi:10.3305/nh.2012.27.4.5819

 

Ramírez E, Valencia ME, Moya-Camarena SY, Alemán-Mateo H, Méndez RO. Four-compartment model and validation of deuterium dilution technique to estimate fat-free mass in Mexican youth. Nutrition. 2009;25(2):194-9. doi:10.1016/j.nut.2008.08.007

 

Radley D, Gately PJ, Cooke CB, Carroll S, Oldroyd B, Truscott JG. Percentage fat in overweight and obese children:comparison of DXA and air displacement plethysmography. Obes Res. 2005;13(1):75-85. doi:10.1038/oby.2005.10

 

Gately PJ, Radley D, Cooke CB, et al. Comparison of body composition methods in overweight and obese children. J Appl Physiol. 2003;95(5):2039-46. doi:10.1152/japplphysiol.00377.2003

 

Lockner DW, Heyward VH, Baumgartner RN, Jenkins KA. Comparison of air-displacement plethysmography, hydrodensitometry, and dual X-ray absorptiometry for assessing body composition of children 10 to 18 years of age. Ann N Y Acad Sci. 2000;904:72-8. doi:10.1111/j.1749-6632.2000.tb06423.x

 

Radley D, Gately PJ, Cooke CB, Carroll S, Oldroyd B, Truscott JG. Estimates of percentage body fat in young adolescents:a comparison of dual-energy X-ray absorptiometry and air displacement plethysmography. Eur J Clin Nutr. 2003;57(11):1402-10. doi:10.1038/sj.ejcn.1601702

 

Plasqui G, den Hoed M, Bonomi A, Westerterp KR. Body composition in 10-13-year-old children:a comparison between air displacement plethysmography and deuterium dilution. Int J Pediatr Obes. 2009;4(4):397-404. doi:10.3109/17477160902952472

 

Sopher AB, Thornton JC, Wang J, Pierson RN, Heymsfield SB, Horlick M. Measurement of percentage of body fat in 411 children and adolescents:a comparison of dual-energy X-ray absorptiometry with a four-compartment model. Pediatrics. 2004;113(5):1285-90. doi:10.1542/peds.113.5.1285

 

Ramírez E, Valencia ME, Moya Camarena SY, Alemán-Mateo H, Méndez RO. Estimación de la masa grasa por DXA y el modelo de cuatro compartimentos en púberes mexicanos de 9 a 14 años. Archivos Latinoamericanos de Nutrición. 2010;60:240-6.

 

Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ. Four-component model of body composition in children:density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr. 1999;69(5):904-12. doi:10.1093/ajcn/69.5.904

 

Wang L, Hui SS. Validity of four commercial bioelectrical impedance scales in measuring body fat among Chinese children and adolescents. BioMed Res Int. 2015;2015:614858. doi:10.1155/2015/614858

 

Lazzer S, Bedogni G, Agosti F, De Col A, Mornati D, Sartorio A. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents. Br J Nutr. 2008;100(4):918-24. doi:10.1017/S0007114508922558

 

Ben Jemaa H, MankaïA, Khlifi S, et al. Development and validation of impedance-based equations for the prediction of total body water and fat-free mass in children aged 8-11 years. Clin Nutr. 2019;38(1):227-33. doi:10.1016/j.clnu.2018.01.028

 

Resende CMM, Camelo Júnior JS, Vieira MNCM, et al. Body composition measures of obese adolescents by the deuterium oxide dilution method and by bioelectrical impedance. Braz J Med Biol Res. 2011;44(11):1164-70. doi:10.1590/s0100-879x2011007500122

 

Loftin M, Nichols J, Going S, et al. Comparison of the validity of anthropometric and bioelectric impedance equations to assess body composition in adolescent girls. Int J Body Compos Res. 2007;5(1):1-8.

 

Okasora K, Takaya R, Tokuda M, et al. Comparison of bioelectrical impedance analysis and dual energy X-ray absorptiometry for assessment of body composition in children. Pediatr Int. 1999;41(2):121-5.

 

Tyrrell VJ, Richards G, Hofman P, Gillies GF, Robinson E, Cutfield WS. Foot-to-foot bioelectrical impedance analysis:a valuable tool for the measurement of body composition in children. Int J Obes Relat Metab Disord. 2001;25(2):273-8. doi:10.1038/sj.ijo.0801531

 

Lim JS, Hwang JS, Lee JA, et al. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr Int. 2009;51(2):263-8. doi:10.1111/j.1442-200X.2008.02698.x

 

Kriemler S, Puder J, Zahner L, Roth R, Braun-Fahrländer C, Bedogni G. Cross-validation of bioelectrical impedance analysis for the assessment of body composition in a representative sample of 6- to 13-year-old children. Eur J Clin Nutr. 2009;63(5):619-26. doi:10.1038/ejcn.2008.19

 

Lazzer S, Boirie Y, Meyer M, Vermorel M. Evaluation of two foot-to-foot bioelectrical impedance analysers to assess body composition in overweight and obese adolescents. Br J Nutr. 2003;90(5):987-92. doi:10.1079/bjn2003983

 

Urrejola P, Hernández MI, Icaza MG, Velandia S, Reyes ML, Hodgson MI. Estimación de masa grasa en niños chilenos:ecuaciones de pliegues subcutáneos vs densitometría de doble fotón. Rev Chil Pediatr. 2011;82(6):502-11. doi:10.4067/S0370-41062011000600004

 

Noradilah MJ, Ang YN, Kamaruddin NA, Deurenberg P, Ismail MN, Poh BK. Assessing body fat of children by skinfold thickness, bioelectrical impedance analysis, and dual-energy X-ray absorptiometry:a validation study among Malay children aged 7 to 11 years. Asia Pac J Public Health. 2016;28(5 Suppl):74S-84S. doi:10.1177/1010539516641505

 

Wohlfahrt-Veje C, Tinggaard J, Winther K, et al. Body fat throughout childhood in 2647 healthy Danish children:agreement of BMI, waist circumference, skinfolds with dual X-ray absorptiometry. Eur J Clin Nutr. 2014;68(6):664-70. doi:10.1038/ejcn.2013.282

 

Ramírez E, Valencia ME, Bourges H, et al. Body composition prediction equations based on deuterium oxide dilution method in Mexican children:a national study. Eur J Clin Nutr. 2012;66(10):1099-103. doi:10.1038/ejcn.2012.89

 

Ortiz-Hernández L, Vega López AV, Ramos-Ibáñez N, Cázares Lara LJ, Medina Gómez RJ, Pérez-Salgado D. Equations based on anthropometry to predict body fat measured by absorptiometry in schoolchildren and adolescents. J Pediatr. 2017;93(4):365-73. doi:10.1016/j.jped.2016.08.008

 

Elberg J, McDuffie JR, Sebring NG, et al. Comparison of methods to assess change in children's body composition. Am J Clin Nutr. 2004;80(1):64-9. doi:10.1093/ajcn/80.1.64

 

González-Ruiz K, Medrano M, Correa-Bautista JE, et al. Comparison of bioelectrical impedance analysis, slaughter skinfold-thickness equations, and dual-energy X-ray absorptiometry for estimating body fat percentage in Colombian children and adolescents with excess of adiposity. Nutrients. 2018;10(8):1086. doi:10.3390/nu10081086

 

Eisenmann JC, Heelan KA, Welk GJ. Assessing body composition among 3- to 8-year-old children:anthropometry, BIA, and DXA. Obes Res. 2004;12(10):1633-40. doi:10.1038/oby.2004.203

 

Wong WW, Stuff JE, Butte NF, Smith EO, Ellis KJ. Estimating body fat in African American and white adolescent girls:a comparison of skinfold-thickness equations with a 4-compartment criterion model. Am J Clin Nutr. 2000;72(2):348-54. doi:10.1093/ajcn/72.2.348

 

Rodríguez G, Moreno LA, Blay MG, et al. Body fat measurement in adolescents:comparison of skinfold thickness equations with dual-energy X-ray absorptiometry. Eur J Clin Nutr. 2005;59(10):1158-66. doi:10.1038/sj.ejcn.1602226

 

Altman DG, Bland JM. Assessing agreement between methods of measurement. Clin Chem. 2017;63(10):1653-4. doi:10.1373/clinchem.2016.268870

 

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10.

 

Marinangeli CPF, Kassis AN. Use of dual X-ray absorptiometry to measure body mass during short- to medium-term trials of nutrition and exercise interventions. Nutr Rev. 2013;71(6):332-42. doi:10.1111/nure.12025




DOI: https://doi.org/10.24875/RMIMSS.M20000016

Enlaces refback

  • No hay ningún enlace refback.