ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

La AMPK como diana terapéutica del síndrome metabólico / AMPK as a therapeutic target for metabolic syndrome

Gerardo Hernández-Puga, Kevin David Laguna-Maldonado, Raul Gergg-García, Giselle Barrera-Zárate, David Feliciano López-Ortíz, Deyamira Matuz-Mares

Resumen


Resumen

La cinasa activada por AMP (AMPK) es una enzima crucial en la regulación del metabolismo energético celular, cuya actividad se encuentra regulada por diversos mecanismos, entre los cuales el principal es el aumento en la concentración intracelular de AMP. Esta enzima cataliza la fosforilación de múltiples proteínas reguladoras de las vías metabólicas de lípidos y de hidratos de carbono, con lo que favorecen su catabolismo. Debido a esto, ejerce un papel importante en la fisiopatología de enfermedades como el síndrome metabólico y la diabetes mellitus  tipo 2, las cuales tienen una alta prevalencia en la población mexicana. En vista de lo anterior, la AMPK se ha convertido en diana terapéutica relevante en el que actúan diversos fármacos utilizados en el manejo de estas patologías, como es el caso de la metformina y la pioglitazona.

Abstract

The AMP-activated kinase (AMPK) is an important enzyme involved in the regulation of cell metabolism, whose activity is regulated by several mechanisms, mainly the increased concentration of AMP. This enzyme catalyze the phosphorylation of several regulatory proteins implicated in the metabolism of lipids and carbohydrates, upregulating their catabolism. Thus, the AMPK plays an important role in the pathophysiology of some diseases, such as metabolic syndrome and type 2 diabetes mellitus, which have a high prevalence among Mexican population. Because of this, the AMPK has become a relevant target for several drugs used in the management of these pathologies, e.g. metformin and pioglitazone.


Palabras clave


Síndrome Metabólico; Diabetes Mellitus Tipo 2; Proteínas Cinasas Activadas por AMP; Metformina / Metabolic Syndrome; Diabetes Mellitus, Type 2; AMP-Activated Protein Kinases; Metformin

Texto completo:

PDF HTML

Referencias


Antonio González-Chávez, Luis Simental, Sandra Elizondo-Argueta JSZ, Gabriela Gutiérrez Salgado FG-R. Prevalencia del síndrome metabólico entre adultos mexicanos no diabéticos, usando las definiciones de la OMS, NCEP-ATPIIIa e IDF. Rev Med Hosp Gen (Mex). 2008;71(1):11–9.

2.       Kaartinen K, Syrjänen J, Pörsti I, Harmoinen A, Huhtala H, Mustonen J. Metabolic Syndrome in IgA Glomerulonephritis. Nephron Extra. 2014;4(2):138–45.

3.       Salazar-Coronel AA, Martinez-Tapia B, Mundo-Rosas V, Gómez-Humarán IM, Uribe-Carvajal R. Conocimiento y nivel de comprensión de la campaña Chécate, Mídete, Muévete en adultos mexicanos. Salud Publica Mex. 2018;60(3, may-jun):356–64.

4.       Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271(44):27879–87.

5.       Pang T, Xiong B, Li JY, Qiu BY, Jin GZ, Shen JK, et al. Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits. J Biol Chem. 2007;282(1):495–506.

6.       Bendayan M, Londono I, Kemp BE, Hardie GD, Ruderman N, Prentki M. Association of AMP-activated protein kinase subunits with glycogen particles as revealed in situ by immunoelectron microscopy. J Histochem Cytochem. 2009;57(10):963–71.

7.       Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol [Internet]. 2013;366(2):194–203. Disponible en: http://dx.doi.org/10.1016/j.mce.2012.06.014

8.       Nagendran J, Waller TJ, Dyck JRB. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol [Internet]. 2013;366(2):180–93. Disponible en: http://dx.doi.org/10.1016/j.mce.2012.06.015

9.       Hardie DG, Carling D, Gamblin SJ. AMP-activated protein kinase: Also regulated by ADP? Trends Biochem Sci [Internet]. 2011;36(9):470–7. Disponible en: http://dx.doi.org/10.1016/j.tibs.2011.06.004

10.     Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med [Internet]. 2016;48(7):e245. Disponible en: http://dx.doi.org/10.1038/emm.2016.81

11.     Jensen TE, Rose AJ, Jørgensen SB, Brandt N, Schjerling P, Wojtaszewski JFP, et al. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol - Endocrinol Metab. 2007;292(5):1308–17.

12.     Dzamko NL, Steinberg GR. AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta Physiol. 2009;196(1):115–27.

13.     Philp A, Burke LM, Baar K. Altering endogenous carbohydrate availability to support training adaptations. Nestle Nutr Inst Workshop Ser. 2011;69:19–31.

14.     Pernicova I, Korbonits M. Metformin-Mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol [Internet]. 2014;10(3):143–56. Disponible en: http://dx.doi.org/10.1038/nrendo.2013.256

15.     Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol. 2006;209(12):2265–75.

16.     Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, et al. Exercise induces isoform-specific increase in 5’ AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273(3):1150–5.

17.     Wojtaszewski JFP, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;528(1):221–6.

18.     Stephens TJ, Chen ZP, Canny BJ, Michell BJ, Kemp BE, McConell GK. Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise. Am J Physiol - Endocrinol Metab. 2002;282(3 45-3):688–94.

19.     Chen ZP, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes. 2003;52(9):2205–12.

20.     Smith BK, Steinberg GR. AMP-Activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2017;20(4):248–53.

21.     McGee SL, Hargreaves M. Exercise and Myocyte Enhancer Factor 2 Regulation in Human Skeletal Muscle. Diabetes. 2004;53(5):1208–14.

22.     Chavez JA, Roach WG, Keller SR, Lane WS, Lienhard GE. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem. 2008;283(14):9187–95.

23.     Vazirian M, Nabavi SM, Jafari S, Manayi A. Natural activators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem Toxicol [Internet]. 2018;122(April):69–79. Disponible en: https://doi.org/10.1016/j.fct.2018.09.079

24.     McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol - Hear Circ Physiol. 1990;259(4 28-4).

25.     Puthanveetil P, Wang F, Kewalramani G, Min SK, Hosseini-Beheshti E, Ng N, et al. Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. Am J Physiol - Hear Circ Physiol. 2008;295(4).

26.     Habets DDJ, Coumans WA, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B, et al. Crucial role for LKB1 to AMPKα2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2009;1791(3):212–9. Disponible en: http://dx.doi.org/10.1016/j.bbalip.2008.12.009

27.     Zenimaru Y, Takahashi S, Takahashi M, Yamada K, Iwasaki T, Hattori H, et al. Glucose deprivation accelerates VLDL receptor-mediated TG-rich lipoprotein uptake by AMPK activation in skeletal muscle cells. Biochem Biophys Res Commun. 2008;368(3):716–22.

28.     Omar MA, Fraser H, Clanachan AS. Ischemia-induced activation of AMPK does not increase glucose uptake in glycogen-replete isolated working rat hearts. Am J Physiol - Hear Circ Physiol. 2008;294(3):1266–73.

29.     Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000;10(20):1247–55.

30.     Srivastava RAK, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS. AMP-activated protein kinase: An emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res. 2012;53(12):2490–514.

31.     Andreelli F, Foretz M, Knauf C, Cani PD, Perrin C, Iglesias MA, et al. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology. 2006;147(5):2432–41.

32.     Boudaba N, Marion A, Huet C, Pierre R, Viollet B, Foretz M. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine [Internet]. 2018;28:194–209. Disponible en: https://doi.org/10.1016/j.ebiom.2018.01.008

33.     Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem. 2002;277(6):3829–35.

34.     Hunter RW, Treebak JT, Wojtaszewski JFP, Sakamoto K. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes. 2011;60(3):766–74.

35.     Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437(7062):1109–14.

36.     Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J. 2003;375(1):1–16.

37.     McInnes KJ, Brown KA, Hunger NI, Simpson ER. Regulation of LKB1 expression by sex hormones in adipocytes. Int J Obes [Internet]. 2012;36(7):982–5. Disponible en: http://dx.doi.org/10.1038/ijo.2011.172

38.     Brooks BJ, Arch JRS, Newsholme EA. Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat cells (1982) FEBS Letters 146,327-330. FEBS Lett. 1982;148(1):175.

39.     Gauthier, Marie-Soleil, Hideaki Miyoshi, Sandra C. Souza, José M. Cacicedo, Asish K. Saha, Andrew S. Greenberg NBR. AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte. J Biol Chem. 2008;283(24):16514–24.

40.     Anthony NM, Gaidhu MP, Ceddia RB. Regulation of visceral and subcutaneous adipocyte lipolysis by acute AICAR-induced AMPK activation. Obesity. 2009;17(7):1312–7.

41.     De Morentin PBM, González CR, Saha AK, Martins L, Diéguez C, Vidal-Puig A, et al. Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev Endocr Metab Disord. 2011;12(3):127–40.

42.     Eckel RH. Lipoprotein lipase, A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989;320(16):1060–89.

43.     Jensen MD, Caruso M, Heiling V, Miles JM. Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes. 1989;38(12):1595–601.

44.     Tooke JE, Hannemann MM. Adverse endothelial function and the insulin resistance syndrome. J Intern Med. 2000;247(4):425–31.

45.     Julie P. Sutherland, Benjamin Mckinley RHE. The metabolic syndrome and inflammation. Metab Syndr Relat Disord. 2004;2(2):82–104.

46.     Nawrocki AR, Scherer PE. The delicate balance between fat and muscle: Adipokines in metabolic disease and musculoskeletal inflammation. Curr Opin Pharmacol. 2004;4(3):281–9.

47.     Luizon MR, Eckalbar WL, Wang Y, Jones SL, Smith RP, Laurance M, et al. Genomic Characterization of Metformin Hepatic Response. PLoS Genet. 2016;12(11):1–27.

48.     Bang S, Chen Y, Ahima RS, Kim SF. Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action. Mol Endocrinol. 2014;28(7):1186–93.

49.     Hegarty BD, Turner N, Cooney GJ, Kraegen EW. Insulin resistance and fuel homeostasis: The role of AMP-activated protein kinase. Acta Physiol. 2009;196(1):129–45.

50.     Walker RM. Managing Distributed Control System Data Bases Using Host Computers. Proc Annu Control Eng Conf. 1985;53(April):483–7.

51.     He Z, Peng Y, Duan W, Tian Y, Zhang J, Hu T, et al. Aspirin regulates hepatocellular lipid metabolism by activating AMPK signaling pathway. J Toxicol Sci. 2015;40(1):127–36.

52.     Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J. 2015;468(1):125–32.


Enlaces refback

  • No hay ningún enlace refback.