ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Biología del SARS-CoV-2: hacia el entendimiento y tratamiento de COVID 19 / Biology of SARS-CoV-2: Towards understanding and treating COVID-19

Patricia Piña-Sánchez, Alberto Monroy-García, Juan José Montesinos, Marcos Gutiérrez-de la Barrera, Eduardo Manuel Vadillo-Rosado, María Antonieta Chávez-González, Martha Eugenia Ruiz-Tachiquín, Ricardo López-Romero, Mauricio Salcedo, Agustín Avilés, Héctor Mayani

Resumen


Resumen

Durante las últimas dos décadas, tres epidemias de gran magnitud, causadas por tres distintos tipos de coronavirus, han impactado a la humanidad. La más reciente, conocida como COVID‑19, ha provocado en tan solo cinco meses, más de 340 000 muertes en todo el mundo. Conocer la biología de los coronavirus es fundamental, tanto para enfrentar la pandemia actual, como para prepararnos para futuras epidemias. En este contexto, el presente artículo está enfocado en la biología de los coronavirus con énfasis en el SARS‑CoV‑2, agente causal de COVID‑19. La temática que se incluye es muy amplia, abarca desde la biología general de los virus y su taxonomía, hasta aspectos muy puntuales de la biología molecular de SARS‑CoV‑2, así como de sus mecanismos de acción y la respuesta inmune. También presentamos distintos aspectos clínicos de COVID‑19, de los métodos para su detección y algunos enfoques terapéuticos, incluyendo tratamientos antivirales y vacunas.

Abstract

During the last two decades, three different epidemics, caused by three different coronaviruses, have affected human-kind. The most recent, known as COVID-19, has caused in only five months, more than 340,000 deaths worldwide. Knowing the biology of coronavirus is key, not just to face the current pandemic, but to prepare ourselves for future epidemics. With this in mind, this article is focused on the biology of coronaviruses emphasizing SARS-CoV-2, the agent that causes COVID-19. This is a comprehensive review article, which covers different topics, from the biology and taxonomy of viruses, to the molecular biology of SARS-CoV-2, its mechanisms of action, and the immune response this virus elicits. We have also addressed clinical aspects of COVID-19, its methods of detection, treatment, and vaccines.


Palabras clave


Biología; Coronavirus; COVID 19; SARS-CoV-2; Epidemias / Biology; Coronavirus; COVID-19; SARS-CoV-2; Epidemics

Texto completo:

PDF HTML

Referencias


 

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92.

 

Ye Z-W, Yuan S, Yuen K-S, Fung S-Y, Chan C-P, Jin D-Y. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020;16(10):1686-97.

 

De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-34.

 

Ciotti M, Angeletti S, Minieri M, Giovannetti M, Benvenuto D, Pascarella S, et al. COVID-19 outbreak: an overview. Chemotherapy. 2020. doi: 10.1159/000507423

 

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727 33.

 

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCov and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536 44.

 

Raoult D, Forterre P. Redefining viruses: lessons from mimivirus. Nat Rev Microbiol. 2008;6(4):315 9.

 

Krupovic M, Dolja VV, Koonin EV. Origin of viruses: Primordial replicators recruiting capsides from hosts. Nat Rev Microbiol. 2019;17(7):449-58.

 

Rossmann MG. Structure of viruses: a short history. Q Rev Biophys. 2013;46(2):133 80.

 

La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, et al. The virophage as a unique parasite of the giant mimivirus. Nature. 2008;455(7209):100-4.

 

Carter J, Saunders V. Virology: Principles and Applications. 2nd Edition. UK: Wiley; 2007.

 

Koonin EV. The origins of cellular life. Antonie van Leeuwenhoek. 2014;106:27-41.

 

Koonin EV, Dolja VV. A virocentric perspective on the evolution of life. Curr Op Virol. 2013;3(5):546-57.

 

Koonin EV. Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Biol Sci.2016;371:20150442.

 

Mosier DE. How HIV changes its tropism: evolution and adaptation? Curr Opin HIV AIDS. 2009;4(2):125-30.

 

Begum F, Das S, Mukherjee D, Mal S, Ray U. Insight into the tropism of Dengue virus in humans. Viruses. 2019;11(12):1136.

 

International Committee on Taxonomy of Viruses (ICTV). The online (10th) Report of the ICTV. Disponible en https://talk.ictvonline.org/ictv-reports/ictv_online_report/introduction/w/introduction-to-the-ictv-online-report/418/virus-properties [Consultado el 8 de abril de 2020].

 

Simmonds P, Aiewsakun P. Virus classification – where do you draw the line? Arch Virol. 2018;163(8):2037 46.

 

Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020;84(2):e00061-19 .

 

Carroll D, Daszak P, Wolfe ND, Gao GF, Morel CM, Morzaria, S, et al. The Global Virome Project. Science. 2018;359(6378):872 4. doi:10.1126/science.aap7463

 

International Committee on Taxonomy of Viruses (ICTV). The ICTV Report on Virus Classification and Taxon Nomenclature. Disponible en https://talk.ictvonline.org/ictv-reports/ictv_online_report/introduction/ [Consultado el 8 de abril de 2020].

 

International Committee on Taxonomy of Viruses (ICTV). ICTV Taxonomy. Disponible en https://talk.ictvonline.org/taxonomy/w/ictv-taxonomy [Consultado el 8 de abril de 2020].

 

Secretaría de Salud. Sistema Nacional de Vigilancia Epidemiológica. Boletín Epidemiológico. Número 13. Volumen 37. Semana 13. México: Secretaría de Salud: del 22 al 28 de marzo del 2020.  pp. 8 y 23. Disponible en https://www.gob.mx/cms/uploads/attachment/file/545372/sem13.pdf [Consultado el 8 de abril de 2020].

 

International Committee on Taxonomy of Viruses (ICTV). ICTV 9th Report (2011). Disponible en https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive sense rna viruses 2011/w/posrna_viruses/222/coronaviridae [Consultado el 8 de abril de 2020].

 

Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193-292.

 

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;2-4.

 

Fehr AR, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods Mol Biol. 2015;1282:1-23.

 

Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes Infect. 2020;9(1):601-4.

 

Kupferschmidt K. Genome analyses help track coronavirus’ moves. Science. 2020;367(6483):1176 7.

 

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325-8.

 

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565 74.

 

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92:418-23.

 

Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020; [published online ahead of print, 2020 Mar 13].

 

Vandelli A, Monti M, Milanetti E, Ponti RD, Tartaglia GG. Structural analysis of SARS-CoV-2 and prediction of the human interactome. bioRxiv. 2020;2:2020.03.28.013789

 

Shu C, Huang X, Brosius J, Deng C. Exploring potential super infection in SARS-CoV2 by genome-wide analysis and receptor – ligand docking. Preprints. 2020;2020030310

 

Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270- 3.

 

Paules CI, Marston HD, Fauci AS. Coronavirus Infections—More Than Just the Common Cold. JAMA. 2020;323(8):707-8.

 

Van der hoek L. Human coronaviruses: What do they cause? Antiviral therapy. 2007;12:651-8.

 

Hua X, Vijay R, Channappanavar R, Athmer J, Meyerholz DK, Pagedar N, et al. Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia. JCI Insight. 2018;3(11):99025.

 

Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. 2016;4(3):3390.

 

Hui D, Zumla A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect Dis Clin North Am. 2019;33:869-89.

 

Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-47.

 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271 80.

 

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4.

 

Li F. Structure, function and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237 61.

 

Van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S, Scott D, et al. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol. 2014;88(16):9220 -2.

 

Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93-116.

 

Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7.

 

Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622-30.

 

Wadman M, Couzin-Frankel J, Kaiser J, Matacic C. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. Science Magazine. 04 17 2020. Disponible en https://www.sciencemag.org/news/2020/04/how-does-coronavirus-kill-clinicians-trace-ferocious-rampage-through-body-brain-toes

 

Proietti E, Bracci L, Puzelli S, Di Pucchio T, Sestili P, De Vincenzi E, et al. Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J Immunol. 2002;169(1):375-83.

 

Wilkins C, Gale M. Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol. 2010;22(1):41-7.

 

Goodbourn S, Didcock L, Randall RE. Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. J Gen Virol. 2000;81(10):2341-64.

 

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74.

 

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127-20.

 

Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 2016;96:219-43.

 

Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-39.

 

Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, et al. T cell responses to whole SARS coronavirus in humans. J Immunol. 2008;181(8):5490-500.

 

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32.

 

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.

 

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1-9.

 

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061.

 

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.

 

Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care. 2020;24:91.

 

Liu Y, Li J, Feng Y. Critical care response to a hospital outbreak of the 2019 nCoV infection in Shenzhen, China. Crit Care. 2020;24:56.

 

Lai CC, Shi TP, Ko WC, Tang HJ, HsueH PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020; 105924.

 

Luo H, Tang Q-L, Shang Y-X, Liang S-B, Yang M, Robinson N, et al. Can Chinese medicine be used for prevention of coronavirus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med. 2020;26(4):243-50. 

 

Li T. Diagnosis and clinical management of severe acute respiratory syndrome coronavirus (SARS Cov2) infection: an operational recommendation of Peking Union Medical college Hospital (V2.0). Emerg Microb Infect. 2020;9:582-7.

 

Lazzeri M, Lanza A, Bellini R, Bellofiore A, Cecchetto S, Colombo A, et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a position paper of the Italian Association of Respiratory Physiotherapists. Monaldi Arch Dis Chest. 2020;90(1):1285.

 

Shakar A, Saini D, Roy S, Mosavi Jarrahi A, Chakraborty A, Bharti SJ, et al. Cancer care delivery challenges amidst coronavirus disease-19 (COVID-19) outbreak: Specific precautions for cancer patients and cancer care providers to prevent spread. Asian Pac J Cancer Prev. 2020;21(3):569-73.

 

Everts M, Cihlar T, Bostwick JR, Whitley RJ. Accelerating Drug Development: Antiviral Therapies for Emerging Viruses as a Model. Annu Rev Pharmacol Toxicol. 2017;57:155-69.

 

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11.

 

Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Pública. 2020;44:e40.

 

Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. Int J Antimicrob Agents. 2020:105945

 

Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020:105938

 

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949

 

Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. Treatment With Lopinavir/Ritonavir or Interferon-beta1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. J Infect Dis. 2015;212(12):1904-13.

 

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020.

 

Raniga K, Liang C. Interferons: Reprogramming the Metabolic Network against Viral Infection. Viruses. 2018;10(1).

 

Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222.

 

Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381-5.

 

Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9(396): eaal3653.

 

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929-36.

 

Kupferschmidt K, Cohen J. Race to find COVID-19 treatments accelerates. Science. 2020;367(6485):1412-3.

 

Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020.

 

Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin alpha/beta-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. 2012;443(3):851-6.

 

Wagstaff KM, Rawlinson SM, Hearps AC, Jans DA. An AlphaScreen(R)-based assay for high-throughput screening for specific inhibitors of nuclear import. J Biomol Screen. 2011;16(2):192-200.

 

Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211(1):80-90.

 

Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA. 2020.

 

Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology 2020; Epub ahead of print. doi: 10.1148/radiol.2020200490

 

Freeman WM, Walker SJ and Vrana KE. Quantitative RT-PCR: Pitfalls and Potential. Biotechniques 1999;26(1):112-25.

 

Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, et al. Recent Progress in understanding 2019 Novel Coronavirus associated with Human Respiratory Disease: Detection, Mechanisms and Treatment. Int J Antimicrob Agents 2020. Epub ahead or print. doi: 10.1016/j.ijantimicag.2020.105950

 

Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myounget J, et al. Current Status of Epidemiology, Diagnosis, Therapeutics and Vaccines for Novel Coronavirus Disease 2019 (COVID 2019). J Microbiol Biotechnol. 2020;30(3):313-24.

 

Tang YW, Schimitz JE, Persing DH, Stratton CW. The Laboratory Diagnosis of COVID-19 Infection: Current Issues and Challenges. J Clin Microbiol 2020. Epub ahead of print. doi: 10.1128/JCM.00512-20

 

Wang YY, Jin YH, Ren XQ, Li YR, Zhang XC, Zeng XT, et al. Updating the diagnostic criteria of COVID-19 “suspected case” and “confirmed case” is necessary. Mil Med Res. 2020;7(1):17-9.

 

Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018;50(2):110-20.

 

Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015;14(3):167 82.

 

Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020;52(20):1-7.

 

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265 9.

 

Wang N, Shang J, Jiang S, Du L. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Front Microbiol. 2020;11(298):1-19.

 

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Crystal structure of the 2019-nCoV spike receptor- binding domain bound with the ACE2 receptor. bioRxiv 2020: https://doi. org/10.1101/2020.02.19.956235.

 

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;180:1-12.

 

Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315-31.

 

Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5(18):1-3.

 

Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RTPCR Test Results in Patients Recovered From COVID-19. JAMA 2020. Disponible en https://jamanetwork.com/journals/jama/fullarticle/2762452

 

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020; doi: 10.1016/S1473-3099(20)30243-7.

 

Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med. 2020; doi: 10.1056/NEJMp2005630.

 

United States Agency for International Development. Emerging Pandemic Threats [Internet]. USAID: Last updated: May 24, 2016. Disponible en https://www.usaid.gov/news-information/fact-sheets/emerging-pandemic-threats-program [Consultado el 10 de abril de 2020].

 

UC Davis Veterinary Medicine. What We’ve Found [Internet]. Disponible en https://ohi.sf.ucdavis.edu/what-weve-found [Consultado el 10 de abril de 2020].

 

McNiel Jr DG. Scientists Were Hunting for the Next Ebola. Now the U.S. Has Cut Off Their Funding. The New York Times [Internet]. 2019. Disponible en https://www.nytimes.com/2019/10/25/health/predict-usaid-viruses.html

 

Carroll D, Daszak P, Wolfe ND, Gao GF, Morel CM, Morzaria S, et al. The Global Virome Project. Science. 2018;359(6378):872 4.

 

Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, et al. Global patterns in coronavirus diversity. Virus Evol. 2017;3(1):1-15.

 




DOI: https://doi.org/10.24875/RMIMSS.M20000131

Enlaces refback

  • No hay ningún enlace refback.