ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Transmisión vertical del SARS CoV 2. Impacto en el sistema nervioso

Lilia María Morales-Chacón

Resumen


Desde que la Organización Mundial de la Salud (OMS) declaró la pandemia de COVID‑19, las infecciones por SARS‑CoV‑2 han tenido un profundo impacto en la salud pública. En este escenario se afectará un número creciente de mujeres embarazadas; asimismo, los fetos y los recién nacidos podrían ser especialmente vulnerables a las consecuencias dañinas de la infección adquirida de manera congénita o perinatal. En este trabajo se revisan las evidencias disponibles sobre la potencial transmisión vertical intrauterina de la infección por SARS‑CoV‑2, tras una revisión exhaustiva de las publicaciones indexadas hasta abril de 2020 en la Biblioteca Nacional de Medicina de los Estados Unidos (PubMed/Medline). Partiendo de las analogías con infecciones TORCH (Toxoplasma gondii, virus de la rubéola, citomegalovirus y virus del herpes) y otros coronavirus, se ofrece una mirada reflexiva sobre los efectos potenciales en el sistema nervioso central (SNC). Las lecciones aprendidas sobre los efectos en el SNC de otras epidemias por virus TORCH, como la del virus Zika en Brasil, y la analogía con los hallazgos en modelos animales, plantean el riesgo de infecciones congénitas y adquiridas perinatalmente, las cuales están relacionadas con el SARS‑CoV‑2. Se desconocen hoy las consecuencias de la infección por el SARS‑CoV‑2 en el primer trimestre del embarazo, y persisten muchas interrogantes sobre su impacto potencial en el SNC.


Palabras clave


Sistema Nervioso; Infecciones por Coronavirus; Transmisión Vertical de Enfermedad Infecciosa; Embarazo

Texto completo:

HTML PDF

Referencias


Bale JF, Jr. Congenital cytomegalovirus infection. Handb Clin Neurol. 2014;123:319-26. doi: 10.1016/B978-0-444-53488-0.00015-8.

 

Muldoon KM, Fowler KB, Pesch MH, Schleiss MR. SARS-CoV-2: Is it the newest spark in the TORCH? J Clin Virol. 2020;127:104372. doi: 10.1016/j.jcv.2020.104372.:104372

 

Chen D, Yang H, Cao Y, Cheng W, Duan T, Fan C, et al. Expert consensus for managing pregnant women and neonates born to mothers with suspected or confirmed novel coronavirus (COVID-19) infection. Int J Gynaecol Obstet. 2020;149(2):130-6.

 

Visintine AM, Gerber P, Nahmias AJ. Leukocyte transforming agent (Epstein-Barr virus) in newborn infants and older individuals. J Pediatr. 1976;89(4):571-5.

 

Leung KKY, Hon KL, Yeung A, Leung AKC, Man E. Congenital infections in Hong Kong: an overview of TORCH. Hong Kong Med J. 2020;26(2):127-38.

 

Tahotna A, Brucknerova J, Brucknerova I. Zika virus infection from a newborn point of view. TORCH or TORZiCH? Interdiscip Toxicol. 2018;11(4):241-6.

 

Shet A. Congenital and perinatal infections: throwing new light with an old TORCH. Indian J Pediatr. 2011;78(1):88-95.

 

Del Pizzo J. Focus on diagnosis: congenital infections (TORCH). Pediatr Rev. 2011;32(12):537 42.

 

De Vries LS. Viral Infections and the Neonatal Brain. Semin Pediatr Neurol. 2019;32:100769. doi: 10.1016/j.spen.2019.08.005

 

Chimelli L, Avvad-Portari E. Congenital Zika virus infection: a neuropathological review. Childs Nerv Syst. 2018;34(1):95-9.

 

Fabris C, Mombro M, Lio C. [Congenital infections caused by TORCH agents]. [Article in Italian] Pediatr Med Chir. 1986;8(4):443-52.

 

Cannie MM, Devlieger R, Leyder M, Claus F, Leus A, de Catte L, et al. Congenital cytomegalovirus infection: contribution and best timing of prenatal MR imaging. Eur Radiol. 2016;26(10):3760-9.

 

Boppana SB, Britt WJ, Fowler K, Hutto SC, James SH, Kimberlin DW, et al. Pathogenesis of Non-Zika Congenital Viral Infections. J Infect Dis. 2017;216(suppl_10):S912 8.

 

Coyne CB, Lazear HM. Zika virus - reigniting the TORCH. Nat Rev Microbiol. 2016;14(11):707-15.

 

Bryson Y. Zika virus congenital syndrome, the new Z in TORCHZ? Prospects for diagnosis prevention and treatment. Curr Opin Pediatr. 2017;29(1):94-6.

 

Adachi K, Nielsen-Saines K. Zika clinical updates: implications for pediatrics. Curr Opin Pediatr. 2018;30(1):105-16.

 

Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika Virus and Birth Defects--Reviewing the Evidence for Causality. N Engl J Med. 2016;374(20):1981-7.

 

Wood H. High risk of epilepsy in children with Zika-related microcephaly. Nat Rev Neurol. 2020;16(4):184-0337.

 

Van der Linden V, Pessoa A, Dobyns W, Barkovich AJ, Junior HV, Filho EL, et al. Description of 13 Infants Born During October 2015-January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth - Brazil. MMWR Morb Mortal Wkly Rep. 2016;65(47):1343-8.

 

Maxwell C, McGeer A, Tai KFY, Sermer M. Management guidelines for obstetric patients and neonates born to mothers with suspected or probable severe acute respiratory syndrome (SARS). J Obstet Gynaecol Can. 2009;31(4):358-64.

 

Ng WF, Wong SF, Lam A, Mak YF, Yao H, Lee KC, et al. The placentas of patients with severe acute respiratory syndrome: a pathophysiological evaluation. Pathology. 2006;38(3):210-8.

 

Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ. Coronavirus Disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol. 2020;(20):10.

 

Katami K, Taguchi F, Nakayama M, Goto N, Fujiwara K. Vertical transmission of mouse hepatitis virus infection in mice. Jpn J Exp Med. 1978;48(6):481-90.

 

Barthold SW, Beck DS, Smith AL. Mouse hepatitis virus and host determinants of vertical transmission and maternally-derived passive immunity in mice. Arch Virol. 1988;100(3-4):171-83.

 

Barthold SW, Smith AL. Virus strain specificity of challenge immunity to coronavirus. Arch Virol. 1989;104(3-4):187-96.

 

Dong L, Tian J, He S, Zhu C, Wang J, Liu C, et al. Possible Vertical Transmission of SARS CoV 2 From an Infected Mother to Her Newborn. JAMA. 2020;2763853.

 

Amanat F, Krammer F. SARS CoV 2 Vaccines: Status Report. Immunity. 2020;52(4):583-9.

 

Zhu H, Wang L, Fang C, Peng S, Zhang L, Chang G, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51-60.

 

Dashraath P, Wong JLJ, Lim MXK, Lim LM, Li S, Biswas A, et al. Coronavirus Disease 2019 (COVID-19) Pandemic and Pregnancy. Am J Obstet Gynecol. 2020;222(6):521-531. doi: 10.1016/j.ajog.2020.03.021

 

Zeng H, Xu C, Fan J, Tang Y, Deng Q, Zhang W, et al. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA. 2020;323(18):1848-9. doi: 10.1001/jama.2020.4861

 

Zeng L, Xia S, Yuan W, Yan K, Xiao F, Shao J, et al. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. 2020;174(7):722-725. doi: 10.1001/jamapediatrics.2020.0878

 

Li M, Chen L, Zhang J, Xiong C, Li X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS One. 2020;15(4):e0230295.

 

Zhao S, Chen H. Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant Biol. 2020;1-9. doi: 10.1007/s40484-020-0199-0

 

Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-15.


Enlaces refback

  • No hay ningún enlace refback.