ISSN: 0443-511
e-ISSN: 2448-5667
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Terapias especificas propuestas para el manejo de COVID-19 / Specific therapies proposed for the management of COVID-19

Oscar Olvera-Reyes, J. Jesús Horacio Abrego-Lara, Gregorio Iván Rodríguez-Hernández, Oscar Daniel Bazán-Muñoz, Cesar Aurelio Trujillo-Rodríguez, Livier Gómez-Limón, Chrystian Irán Castellón-Lomelí, Valeria Judith Iñiguez-Venegas, Edith Livier Martínez-González, Juan Francisco. Martínez-Tavarez, Manuel Ramírez Ramos, Pablo Salvador Santoscoy-Aguirre, Juan Emilio Vásquez-Ramos



La aparición de un nuevo coronavirus, causante del colapso de los sistemas de salud de todo el mundo, ha provocado el surgimiento de cuantiosas investigaciones en busca del tratamiento ideal y un adecuado manejo a esta nueva entidad, ya que su control se ha vuelto imposible y su cura una necesidad internacional. Hasta la fecha existen cientos de artículos y ensayos clínicos por revisar. Por ello, en un intento por facilitar al lector el entendimiento de la nueva evidencia y en forma de resumen, se exponen en el presente artículo las distintas terapias estudiadas hasta el momento: sus efectos antivirales y adversos. Sin olvidar que aún quedan varias incógnitas por resolver y este proceso de nuevo conocimiento apenas comienza.


The appearance of a new coronavirus, which has caused the collapse of health systems around the world, has led to the emergence of numerous investigations looking for the ideal treatment and proper management of this new entity, since its control has become impossible and its cure an international necessity. To date, there are hundreds of articles and clinical trials to review. For this reason, in an attempt to facilitate the reader’s knowledge of the new evidence and in summary form, the different therapies studied so far are presented in this article: their antiviral and adverse effects. Without forgetting that there are still doubts to be resolved and this process of new knowledge is just beginning.



Palabras clave

Infecciones por Coronavirus; Terapia Farmacológica; Dexametasona; Pandemias; SARS-CoV-2 / Coronavirus Infections; Drug Therapy; Dexamethasone; Pandemics; SARS-CoV-2

Texto completo:




Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood,135(23),2033–2040. doi: 10.1182/blood.2020006000


Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis 50, 54-67 (2020). doi: 10.1007/s11239-020-02134-3


Ackermann M, Verleden S, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N  Engl J Med. 2020;383:120-8.


Mucha SR, Dugar S, McCrae K, Joseph DE, Bartholomew J, Sacha G, et al. Coagulopathy in COVID-19.  Cleve Clin J Med. Aug 2020, 87 (8) 461-8. doi: 10.3949/ccjm.87a.ccc024


Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi: 10.1001/jama.2020.1585


Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. doi: 10.1016/ S0140-6736(20)30566-3


Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J  Thromb Haemost. 2020;18:1094-9. doi: doi. org/10.1111/jth.14817


Li J, Li Y, Yang B, Wang H, Li L. Low-molecular-weight heparin treatment for acute lung injury/acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Int J Clin Exp Med. 2018;11(2):414-22.


Dixon B, Smith R, Artigas A, Lafey J, McNicholas B, Schmidt E, et al. Can nebulised heparin reduce time to extubation in SARS CoV 2 the CHARTER study protocol. medRxiv. 2020.2004.2028.20082552 doi: 10.1101/2020.04.28.20082552


Al-Bari M. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70(6):1608-21.


Lee S, Silverman E, Bargman J. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nature Reviews Nephrology.  2011;7(12), 718-29.


Serafin MB, Bottega A, Foletto VS, da Rosa TF, Hörner A, Hörner R. Drug repositioning an alternative for the treatment of coronavirus COVID-19. International Journal of Antimicrobial Agents. 2020;105969. doi: 10.1016/j. ijantimicag.2020.105969.


Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020;177:104762. doi: 10.1016/j. antiviral.2020.104762.


Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269-71.


Devaux C, Rolain J, Colson P. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents. 2020;55:105938. doi: 10.1016/j.ijantimicag.2020.105938.


Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines Against Coronavirus Disease 2019 (COVID-19): Chloroquine or Hydroxychloroquine. International Journal of Antimicrobial Agents. 2020;105945. doi: 10.1016/j.ijantimicag.2020.105945.


Keshtkar-Jahromi M, Bavari S. A  Call for Randomized Controlled Trials to Test the Efficacy of Chloroquine and Hydroxychloroquine as Therapeutics against Novel Coronavirus Disease (COVID-19). Am J Trop Med Hyg. 2020;102(5):932-3. doi: 10.4269/ajtmh.20-0230.


Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45:230-2.


Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro.  Cell Discov. 2020;6:16. doi: 10.1038/s41421-020- 0156-0.


Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-3. doi: 10.5582/bst.2020.01047.


Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.


Yazdany J, Kim AH. Use of Hydroxychloroquine and Chloroquine During the COVID-19 Pandemic: What Every Clinician Should Know. Annals of Internal Medicine 2020;172:754-5.


Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect. 2020;71(15):732-9. doi: 10.1093/cid/ciaa237.


Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC, et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin Infect Dis. 2020:ciaa478.


Li H, Wang YM, Xu JY, Cao B. [Potential antiviral therapeutics for 2019 Novel Coronavirus] [artículo en chino]. Zhonghua Jie He He Hu Xi Za Zhi. 2020 Feb 5;43(0):E002.


Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020 Jan 10;11(1):222.


Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6.


Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99.


Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9(396):eaal3653.


Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC et al. Remdesivir for the Treatment of Covid-19 —Final Report; N Engl J Med. 2020; 383:1813-26. doi: 10.1056/NEJMoa2007764.


Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:1569-78.


Sandro GVR, Wilson CS. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica. 2020;44:e40. doi: 10.26633/RPSP.2020.40


World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance. 2020. Disponible en:


Horby P, Shen LW, Emberson J, Mafham M, Bell JL, Linsell L, et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. N  Engl J Med. 2021;384:693-704.


Heneghan C, Aronson J, Hobbs R, Mahtani K. Rapidly managing pneumonia in older people during a pandemic. Oxford Covid Evidence Centre; 2020. pp:1-7. Disponible en:


Russell C, Millar J, Baillie J. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5.


Alhazzani W, Møller M, Arabi Y. Surviving Sepsis Campaign. Intensive Care Medicine. 2020; 46(5):854-87. doi: 10.1007/s00134-020-06022-5.


Giorgi V, Sirotti S, Marotto D. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clinical and Experimental Rheumatology. 2020;38(2):337-42.


Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) a review. JAMA. 2020;23(18):1824-36. doi:10.100 1/jama.2020.6019.


Phua J, Weng L, Ling L, Egi M, Lim C, Divatia JV, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020  May;8(5):506-517. doi: 10.1016/ S2213-2600(20)30161-2.


Stiehm E. Adverse Effects of Human Immunoglobulin Therapy. Transfusion Medicine Reviews. 2013; 27(3):171-8. doi 10.1016/j.tmrv.2013.05.004.


Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw F, Lim WS, et al. The Effectiveness of Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe Acute Respiratory Infections of Viral Etiology: A  Systematic Review and Exploratory Meta-analysis. Journal of Infectious Diseases. 2015; 211(1):80-90. doi: 10.1093/infdis/jiu396.


Yokota S, Imagawa T, Mori M, Miyamae T, Aihara Y, Takei S, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet. 2008;371(9617):998-1006.


Campbell L, Chen C, Bhagat S, Parker RA, Ostor AJK. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford). 2011;50(3):552-62. doi: 10.1093/rheumatalogy/keq343.


Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970-5. doi: 10.1073/pnas.2005615117.


Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN) and Sanofi. Regeneron and Sanofi Begin Global Kevzara® (sarilumab) Clinical Trial Program in Patients with Severe COVID-19. 2020. Disponible en:


Götz V, Magar L, Dornfeld D, Giese S, Pohlmann A, Höper D, et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep. 2016;6:23138. doi: 10.1038/srep23138.


Lundberg L, Pinkham C, Baer A. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Research. 2013;100(3):662- 72. doi: 10.1016/j.antiviral.2013.10.004.


Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/ β1 heterodimer. Antiviral Res. 2020  May;177:104760. doi: 10.1016/j.antiviral.2020.104760.


Caly L, Wagstaff KM, Jans DA. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals? Antiviral Res. 2012;95(3):202-6. doi: 10.1016/j.antiviral.2012.06.008.


Jans D, Martin A, Wagstaff K. Inhibitors of nuclear transport. Current Opinion in Cell Biology. 2019;58:50-60. doi: 10.1016/


Rowland RR, Chauhan V, Fang Y, Pekosz A, Kerrigan M, Burton MD. Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. J  Virol. 2005;79(17):11507-12. doi:10.1128/ JVI.79.17.11507-11512.2005.


Timani KA, Liao Q, Ye L, Zeng Y, Liu J, Zheng Y, et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 2005;114(1-2):23-34. doi: 10.1016/j.virusres.2005.05.007.


Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol. 2015;6:553. doi:10.3389/fmicb.2015.00553.


Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P. Baric RS, Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane. Journal of Virology. 2007;81(18):9812-24. doi: 10.1128/ JVI.01012-0.



Enlaces refback

  • No hay ningún enlace refback.