ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Patrones de densidad mamaria por mamografía en mujeres de Torreón, Coahuila / Mammographic density patterns in women from Torreon, Coahuila

Esmeralda Martínez-García, José Luis Cortés-Sánchez, Christa Nadine Ovalle-Escalera, Tania González-Cortés, Jorge Haro-Santa Cruz, Hilda Isabel Sarmiento-Martínez

Resumen


Resumen

Introducción: el cáncer de mama es la principal causa de muerte por cáncer en las mujeres mexicanas. La densidad mamaria alta es un factor de riesgo para desarrollar cáncer de mama, que también incrementa la mortalidad. Son escasos los estudios en México que describan la relación de los patrones de densidad mamaria con la incidencia y la mortalidad del cáncer de mama.

Objetivo: analizar la distribución de densidad mamaria y la proporción de BI-RADS (Breast Imaging Reporting and Data System) en mujeres de Torreón, Coahuila.

Método: estudio observacional y retrospectivo. Se recopilaron reportes de mastografía digital de diagnóstico o escrutinio del sector público (Instituto Mexicano del Seguro Social, Hospital General de Zona No. 16) y privado (Sanatorio Español y privados) en Torreón, Coahuila, de enero de 2013 a marzo de 2017. Solo se incluyeron reportes mamográficos que incluyeran edad, densidad mamaria y BI-RADS. Se analizó la distribución de densidad mamaria por edad, lugar de realización y BI-RADS mediante la prueba de ji al cuadrado.

Resultados: se incluyeron 2187 mujeres (cerca del 1% de la población de mujeres adultas de Torreón), con una edad media de 54.4 años. La distribución global de patrones mamográficos fue: 19.15% adiposo, 47.76% fibroglandular, 27.10% heterogéneamente denso y 5.99% denso.

Conclusiones: el patrón predominante en las mujeres con cáncer de mama es el patrón fibroglandular; solo el 6% registraron mamas extremadamente densas. Los resultados sugieren que el tejido no denso podría aumentar el riesgo de cáncer de mama. Futuros estudios podrían analizar factores de riesgo como el índice de masa corporal.

Abstract Background: Breast cancer is the main cause of death by cancer in Mexican women. High mammographic breast density is a well-established breast cancer risk factor that also increases the risk of death. However, there is limited data of breast density patterns among Mexican women and their association with breast cancer incidence and mortality.

Objective: To determine the distribution of breast density patterns and BI-RADS (Breast Imaging Reporting and Data System) among women from Torreon, Coahuila.

Method: Observational and retrospective study. Mammographic reports of women from Torreon, Mexico, were analyzed. Reports came from IMSS HGZ#16, Sanatorio Español and a private radiological office. Only mammographic records which described age, breast density and Bi-RADS reports were included. Differences on breast density distribution were analyzed with the Chi-Square test according to age, economic sectors and BI-RADS classification.

Results: A total of 2,187 women were included, representing about 1% of the total adult women population of Torreon. The mean age was 54.4 years, and the mammographic density patterns distribution was: 19.15% fatty, 47.76% fibroglandular density, 27.10% heterogeneously dense, and 5.99% extremely dense.

Conclusions: The main pattern in this Mexican population is the fibroglandular density, and extremely dense breast was only 6%. Our results suggest that non-dense breast tissue could increase breast cancer risk. Further studies on related risk factors, like body mass index are required.


Palabras clave


Densidad de la Mama; Mamografía; Neoplasias de la Mama / Breast Density; Mammography; Breast Neoplasms

Texto completo:

PDF HTML PubMed

Referencias


Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

 

Rizo-Ríos P, González-Rivera A, Sánchez-Cervantes F, Murguía-Martínez P. Trends in cancer mortality in Mexico: 1990–2012. Rev Médica Hosp Gen México. 2015;78(2):85-94.

 

Instituto Nacional de Estadística y Geografía. Estadísticas a propósito del… Día Internacional Mundial de la Lucha contra el Cáncer de Mama (19 de octubre). Aguascalientes, Ags: INEGI; 2014. Disponible en: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2014/mama0.pdf. Consultado 16 Septiembre 2020

 

Domingo L, Sala M, Louro J, Baré M, Barata T, Ferrer J, et al. Exploring the role of breast density on cancer prognosis among women attending population-based screening programmes. J Oncol. 2019;2019:1781762.

 

McCormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159-69.

 

Huo CW, Chew GL, Britt KL, Ingman WV, Henderson MA, Hopper JL, et al. Mammographic density — a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144:479-502.

 

Al Mousa DS, Ryan EA, Mello-Thoms C, Brennan PC. What effect does mammographic breast density have on lesion detection in digital mammography? Clin Radiol. 2014;69(4):333-41. doi: 10.1016/j.crad.2013.11.014

 

Ursin G, Hovanessian-Larsen L, Parisky YR, Pike MC, Wu AH. Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Res. 2005;7(5):5-8.

 

Tabár L, Vitak B, Chen THH, Yen AMF, Cohen A, Tot T, et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology. 2011;260(3):658-63. doi: 10.1148/radiol.11110469

 

Hernández-Valencia M, Hernández-Quijano T, Zárate A, Saucedo R. Utilidad y riesgos de la mamografía rutinaria para detectar cáncer de mama. Rev Med Inst Mex Seguro Soc. 2014;52(6):705-8.

 

Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227-36.

 

Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE. BI-RADS® fifth edition: A summary of changes. Diagn Interv Imaging. 2017;98:179-90.

 

Martin LJ, Boyd NF. Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res. 2008;10:201.

 

Chamras H, Bagga D, Elstner E, Setoodeh K, Koeffler HP, Heber D. Preadipocytes stimulate breast cancer cell growth. Nutr Cancer. 1998;32(2):59-63.

 

Roth J, Qiang X, Marbán SL, Redelt H, Lowell BC. The obesity pandemic: where have we been and where are we going? Obes Res. 2004;12(Suppl 2).

 

Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest. 2005;115(5):1163-76.

 

Iyengar P, Combs TP, Shah SJ, Gouon-Evans V, Pollard JW, Albanese C, et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene. 2003;22(41):6408-23.

 

Mancilla-Mazariegos ST, González-Vergara C. Patrones mastográficos en las mujeres mexicanas. Rev An Radiol México. 2019;17(2):1-3.

 

Serralde Vázquez M. Correlacion de hallazgos en mastografía digital vs tomosintesis: estudio realizado en pacientes del Instituto Nacional de Cancerología. 2014. Disponible en: http://incan-mexico.org/incan/docs/tesis/2014/altaespecialidad/Tesis IIM Serralde.pdf

 

Youk JH, Gweon HM, Son EJ, Kim JA. Automated volumetric breast density measurements in the era of the BI-RADS fifth edition: a comparison with visual assessment. Am J Roentgenol. 2016;206(5):1056-62.

 

Calderón-Garcidueñas AL, Sanabria-Mondragón M, Hernández-Beltrán L, López-Amador N, Cerda-Flores RM. Mammographic breast density patterns in asymptomatic Mexican women. Radiol Res Pract. 2012;2012:1-7.

 

Pollan M, Lope V, Miranda-García J, García M, Casanova F, Sánchez-Contador C, et al. Adult weight gain, fat distribution and mammographic density in Spanish pre- and post-menopausal women (DDM-Spain). Breast Cancer Res Treat. 2012;134(2):823-38.

 

O’Neill SC, Leventhal KG, Scarles M, Evans CN, Makariou E, Pien E, et al. Mammographic breast density as a risk factor for breast cancer: awareness in a recently screened clinical sample. Women’s Heal Issues. 2014;24(3):e321-6.

 

Oppong BA, Dash C, O’Neill S, Li Y, Makambi K, Pien E, et al. Breast density in multiethnic women presenting for screening mammography. Breast J. 2018;24(3):334-8. doi: 10.1111/tbj.12941

 

Lokate M, Stellato RK, Veldhuis WB, Peeters PHM, Van Gils CH. Age-related changes in mammographic density and breast cancer risk. Am J Epidemiol. 2013;178(1):101-9.

 

Lokate M, Peeters PHM, Peelen LM, Haars G, Veldhuis WB, van Gils CH. Mammographic density and breast cancer risk: the role of the fat surrounding the fibroglandular tissue. Breast Cancer Res. 2011;13(5):R103. doi: 10.1186/bcr3044

 

Huo CW, Waltham M, Khoo C, Fox SB, Hill P, Chen S, et al. Mammographically dense human breast tissue stimulates MCF10DCIS.com progression to invasive lesions and metastasis. Breast Cancer Res. 2016;18(1):106.

 

Edwards BL, Atkins KA, Stukenborg GJ, Novicoff WM, Larson KN, Cohn WF, et al. The association of mammographic density and molecular breast cancer subtype. Cancer Epidemiol Biomarkers Prev. 2017;26(10):1487-92.

 

Torres-Mejía G, Villaseñor-Navarro Y, Yunes-Díaz E, Ángeles-Llerenas A, Martínez-Montañez OG, Lazcano-Ponce E. Validez y reproducibilidad de la interpretación de la mamografía por radiólogos mexicanos, mediante el sistema BI-RADS. Rev Investig Clin. 2011;63(2):124-34.




DOI: https://doi.org/10.24875/RMIMSS.M21000053

Enlaces refback

  • No hay ningún enlace refback.