ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Activación de sensores del estrés del retículo endoplásmico por dietas asociadas a enfermedades metabólicas y COVID-19 / Activation of endoplasmic reticulum stress sensors by metabolic disease-associated diets and COVID-19

María del Carmen Cortés-Ginez, Luis Arturo Baiza-Gutman, Leticia Manuel-Apolinar, Miguel Cruz-López, Miguel Ángel Ibáñez-Hernández, Margarita Díaz-Flores

Resumen


Resumen

El retículo endoplásmico es un organelo abundante, dinámico y sensor de energía. Sus abundantes membranas, rugosa y lisa, se encuentran distribuidas en diferentes proporciones dependiendo del linaje y requerimiento celular. Su función es llevar a cabo la síntesis de proteínas y lípidos, y es el almacén principal de Ca2+ intracelular. La sobrecarga calórica y la glucolipotoxicidad generada por dietas hipercalóricas provoca la alteración del retículo endoplásmico, activando la respuesta a proteínas mal plegadas (UPR, Unfolded Protein Response, por sus siglas en inglés) como reacción al estrés celular relacionado con el retículo endoplásmico y cuyo objetivo es restablecer la homeostasis del organelo al disminuir el estrés oxidante, la síntesis de proteínas y la fuga de Ca2+. Sin embargo, durante un estrés crónico, la UPR induce formación de especies reactivas de oxígeno, inflamación y apoptosis, exacerbando el estado del retículo endoplásmico y propagando un efecto nocivo para los demás organelos. Es por ello que el estrés del retículo endoplásmico se ha considerado un inductor del inicio y desarrollo de enfermedades metabólicas, incluido el agravamiento de COVID-19. Hasta el momento, existen pocas estrategias para reestablecer la homeostasis del retículo endoplásmico, las cuales son dirigidas a los sensores que desencadenan la UPR. Por tanto, se justifica con urgencia la identificación de nuevos mecanismos y terapias novedosas relacionadas con mitigar el impacto del estrés del retículo endoplásmico y las complicaciones asociadas.

 

Abstract

The endoplasmic reticulum is an abundant, dynamic and energy-sensing organelle. Its abundant membranes, rough and smooth, are distributed in different proportions depending on the cell lineage and requirement. Its function is to carry out protein and lipid synthesis, and it is the main intracellular Ca2+ store. Caloric overload and glycolipotoxicity generated by hypercaloric diets cause alteration of the endoplasmic reticulum, activating the Unfolded Protein Response (UPR) as a reaction to cellular stress related to the endoplasmic reticulum and whose objective is to restore the homeostasis of the organelle by decreasing oxidative stress, protein synthesis and Ca2+ leakage. However, during chronic stress, the UPR induces reactive oxygen species formation, inflammation and apoptosis, exacerbating the state of the endoplasmic reticulum and propagating a deleterious effect on the other organelles. This is why endoplasmic reticulum stress has been considered an inducer of the onset and development of metabolic diseases, including the aggravation of COVID-19. So far, few strategies exist to reestablish endoplasmic reticulum homeostasis, which are targeted to sensors that trigger UPR. Therefore, the identification of new mechanisms and novel therapies related to mitigating the impact of endoplasmic reticulum stress and associated complications is urgently warranted.

 


Palabras clave


Retículo Endoplásmico; Enfermedades Metabólicas; Dieta; Infecciones por Coronavirus; Obesidad / Endoplasmic reticulum; Metabolic Diseases: Diet; Coronavirus Infections; Obesity

Texto completo:

PDF

Referencias


Pérez-Campos Mayoral L, Mayoral Andrade G, Pérez-Campos Mayoral E, Hernández Huerta T, Pina Canseco S, Rodal Canales FJ, et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res. 2020;151(1):11-21. DOI: 10.4103/ijmr.IJMR_1768_17.

 

Ringseis R, Eder K, Mooren FC y Krüger K. Metabolic signals and innate immune activation in obesity and exercise. Exerc Immunol Rev. 2015;21:58-68.

 

Frakes AE y Dillin A. The UPRER: Sensor and Coordinator of Organismal Homeostasis. Mol Cell. 2017;66(6):761-71. DOI: 10.1016/j.molcel.2017.05.031.

 

Gomes E, Shorter J. The molecular language of membraneless organelles. J Biol Chem. 2019;294(18):7115-27. DOI: 10.1074/jbc.TM118.001192.

 

Bola B, Allan V. How and why does the endoplasmic reticulum move? Biochem Soc Trans. 2009;37(Pt 5):961-5. DOI: 10.1042/BST0370961.

 

Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshika-wa T, Matsuzaka T, et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res. 2002;43(8):1220- 35. DOI: https://doi.org/10.1194/jlr.M100417-JLR200.

 

Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86(11):839-48. DOI: 10.1016/j. biochi.2004.09.018.

 

Zeeshan HMA, Lee GH, Kim HR, Chae HJ. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci. 2016;17 (3):327. DOI: 10.3390/ijms17030327.

 

Chong WC, Shastri MD, Eri R. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. Int J Mol Sci. 2017;18(4):771. DOI: 10.3390/ijms18040771.

 

Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21(3):396-413. DOI: 10.1089/ ars.2014.5851.

 

Görlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8(9-10):1391-418. DOI: 10.1089/ars.2006.8.1391.

 

Krebs J, Agellon LB, Michalak M. Ca (2+) homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun. 2015;460(1):114-21. DOI: 10.1016/j.bbrc.2015.02.004.

 

Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol. 2015;6:260-71. DOI: 10.1016/j.redox.2015.08.010.

 

Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology. 2020;161(2):bqz028. DOI: 10.1210/endocr/bqz028.

 

Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol. 2017;5:48. DOI: 10.3389/fcell.2017.00048.

 

Riaz TA, Junjappa RP, Handigund M, Ferdous J, Kim HR, Chae HJ. Role of Endoplasmic Reticulum Stress Sensor IRE1α in Cellular Physiology, Calcium, ROS Signaling, and Metaflammation. Cells. 2020;9(5):1160. DOI: 10.3390/ cells9051160.

 

Sun M, Kotler JLM, Liu S, Street TO. The endoplasmic reticulum (ER) chaperones BiP and Grp94 selectively associate when BiP is in the ADP conformation. J Biol Chem. 2019;294 (16):6387-96. DOI: 10.1074/jbc.RA118.007050.

 

Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019;25:101047. DOI: 10.1016/j.redox.2018.11.005.

 

Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, et al. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol. 2017;158:45-68. DOI: 10.1016/j. pneurobio.2017.08.001.

 

Loza-Medrano SS, Baiza-Gutman LA, Ibáñez-Hernández MÁ, Cruz-López M, Díaz-Flores M. Alteraciones moleculares inducidas por fructosa y su impacto en las enfermedades metabólicas. Rev Med Inst Mex Seguro Soc. 2019;56(5): 491-504.

 

Taskinen MR, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome. Nutrients. 2019;11(9):1987. DOI: 10.3390/nu11091987.

 

Ghemrawi R, Battaglia-Hsu SF, Arnold C. Endoplasmic Reticulum Stress in Metabolic Disorders. Cells. 2018;7(6):63. DOI: 10.3390/cells7060063.

 

Ushioda R, Nagata K. Redox-Mediated Regulatory Mechanisms of Endoplasmic Reticulum Homeostasis. Cold Spring Harb Perspect Biol. 2019;11(5):a033910. DOI: 10.1101/cshperspect.a033910.

 

Ben-Dror K, Birk R. Oleic acid ameliorates palmitic acidinduced ER stress and inflammation markers in naive and cerulein-treated exocrine pancreas cells. Biosci Rep. 2019; 39(5):BSR20190054. DOI: 10.1042/BSR20190054.

 

Frakes AE, Dillin A. The UPRER: Sensor and Coordinator of Organismal Homeostasis. Mol Cell. 2017;66(6):761-71. DOI: 10.1016/j.molcel.2017.05.031.

 

Choi WG, Han J, Kim JH, Kim MJ, Park JW, Song B, et al. eIF2α phosphorylation is required to prevent hepatocyte death and liver fibrosis in mice challenged with a high fructose diet. Nutr Metab (Lond). 2017;14:48. DOI: 10.1186/ s12986-017-0202-6.

 

Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab. 2021;47:101169. DOI: 10.1016/j. molmet.2021.101169.

 

Good AL, Stoffers DA. Stress-Induced Translational Regulation Mediated by RNA Binding Proteins: Key Links to β-Cell Failure in Diabetes. Diabetes. 2020;69(4):499-507. DOI: 10.2337/dbi18-0068.

 

Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology. 2020;161(2):bqz028. DOI: 10.1210/endocr/bqz028.

 

Young CN. Endoplasmic reticulum stress in the pathogenesis of hypertension. Exp Physiol. 2017;102(8):869-84. DOI: 10.1113/EP086274.

 

Laurindo FRM, Araujo TLS, Abrahão TB. Nox NADPH oxidases and the endoplasmic reticulum. Antioxid Redox Signal. 2014;20(17):2755-75. DOI: 10.1089/ars.2013.5605.

 

Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 2016;57(8):1329-38. DOI: 10.1194/ jlr.R067595. 

Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Moreno-Aliaga MJ, Martinez JA; project MENA. Endoplasmic reticulum stress epigenetics is related to adiposity, dyslipidemia, and insulin resistance. Adipocyte. 2018;7(2):137-42. DOI: 10.1080/21623945.2018.1447731.

 

Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non-alcoholic fatty liver disease. Pharmacol Ther. 2019;203:107401. DOI: 10.1016/j. pharmthera.2019.107401.

 

Chen Y, Zhang H, Chen Y, Zhang Y, Shen M, Jia P, et al. Resveratrol Alleviates Endoplasmic Reticulum Stress-Associated Hepatic Steatosis and Injury in Mice Challenged with Tunicamycin. Mol Nutr Food Res. 2020;64(14):e2000105. DOI: 10.1002/mnfr.202000105.

 

Maiers JL, Malhi H. Endoplasmic Reticulum Stress in Metabolic Liver Diseases and Hepatic Fibrosis. Semin Liver Dis. 2019;39(2):235-48. DOI: 10.1055/s-0039-1681032.

 

Gómez-Ochoa SA, Franco OH, Rojas LZ, Raguindin PF, RoaDíaz ZM, Wyssmann BM, et al. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am J Epidemiol. 2021;190(1):161-75. DOI: 10.1093/aje/ kwaa191.

 

Banerjee A, Czinn SJ, Reiter RJ, Blanchard TG. Crosstalk between endoplasmic reticulum stress and anti-viral activities: A novel therapeutic target for COVID-19. Life Sci. 2020; 255:117842. DOI: 10.1016/j.lfs.2020.117842.

 

Bousquet J, Cristol JP, Czarlewski W, Anto JM, Martineau A, Haahtela T, et al. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy. 2020;10(1):58. DOI: 10.1186/s13601-020-00362-7.

 

Momtazi-Borojeni AA, Banach M, Reiner Ž, Pirro M, Bianconi V, Al-Rasadi K, et al. Interaction Between Coronavirus S-Protein and Human ACE2: Hints for Exploring Efficient Therapeutic Targets to Treat COVID-19. Angiology. 2021;72(2):122- 30. DOI: 10.1177/0003319720952284.

 

Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci (Lond). 2020;134(5):543-5. DOI: 10.1042/ CS20200163.

 

Meilhac O, Tanaka S, Couret D. High-Density Lipoproteins Are Bug Scavengers. Biomolecules. 2020;10(4):598. DOI: 10.3390/biom10040598.

 

Patra S, Kerry RG, Maurya GK, Panigrahi B, Kumari S, Rout JR. Emerging Molecular Prospective of SARS-CoV-2: Feasible Nanotechnology Based Detection and Inhibition. Front Microbiol. 2020;11:2098. DOI: 10.3389/fmicb.2020.02098.

 

Vela JM. Repurposing Sigma-1 Receptor Ligands for COVID-19 Therapy? Front Pharmacol. 2020;11:582310. DOI: 10.3389/fphar.2020.582310.

 

Chu H, Chan CM, Zhang X, Wang Y, Yuan S, Zhou J, et al. Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. J Biol Chem. 2018;293(30):11709-26. DOI: 10.1074/jbc. RA118.001897.

 

Echavarría-Consuegra L, Cook GM, Busnadiego I, Lefèvre C, Keep S, Brown K, et al. Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection. PLoS Pathog. 2021;17(6):e1009644. DOI: 10.1371/ journal.ppat.1009644.

 

Di Conza G, Ho PC. ER Stress Responses: An Emerging Modulator for Innate Immunity. Cells. 2020;9(3):695. DOI: 10.3390/ cells9030695.

 

Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006;26(8):3071-84. DOI: 10.1128/MCB.26.8.3071-3084.2006.

 

Wang L, Perera BGK, Hari SB, Bhhatarai B, Backes BJ, Seeliger MA, et al. Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nat Chem Biol. 2012;8 (12):982-9. DOI: 10.1038/nchembio.1094.

 

Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, et al. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J. 2019;286 (2):241-78. DOI: 10.1111/febs.14608.

 

Mejía SÁ, Baiza Gutman LA, Ortega Camarillo C, Medina Navarro R, Sánchez Becerra MC, Damasio Santana L, et al. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP+ and GSH/GSSG ratios and reducing oxidative and inflammatory stress. Eur J Pharmacol. 2018;818:499-507. DOI: 10.1016/j. ejphar.2017.10.048.

 

Loza-Medrano SS, Baiza-Gutman LA, Manuel-Apolinar L, García-Macedo R, Damasio-Santana L, Martínez-Mar OA, et al. High fructose-containing drinking water-induced steatohepatitis in rats is prevented by the nicotinamide-mediated modulation of redox homeostasis and NADPH-producing enzymes. Mol Biol Rep. 2020;47(1):337-51. DOI: 10.1007/ s11033-019-05136-4.

 

Villeda-González JD, Gómez-Olivares JL, Baiza-Gutman LA, Manuel-Apolinar L, Damasio-Santana L, Millán-Pacheco C, et al. Nicotinamide reduces inflammation and oxidative stress via the cholinergic system in fructose-induced metabolic syndrome in rats. Life Sci. 2020;250:117585. DOI: 10.1016/j. lfs.2020.117585.

 

Makarov MV, Trammell SAJ, Migaud ME. The chemistry of the vitamin B3 metabolome. Biochem Soc Trans. 2019;47(1):131- 47. DOI: 10.1042/BST20180420.

 

Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res. 2020;17(5):765-83. DOI: 10.2174/156720261799920111 1195232.

 

Dalamaga M, Christodoulatos GS, Mantzoros CS. The role of extracellular and intracellular Nicotinamide phosphoribosyl-transferase in cancer: Diagnostic and therapeutic perspectives and challenges. Metabolism. 2018;82:72-87. DOI: 10.1016/j.metabol.2018.01.001.

 

Makarov MV, Trammell SAJ, Migaud ME. The chemistry of the vitamin B3 metabolome. Biochem Soc Trans. 2019;47(1):131- 47. DOI: 10.1042/BST20180420.

 

Hwang ES, Song SB. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules. 2020;10(5):687. DOI: 10.3390/biom10050687. 

 

Majumder J, Minko T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. 2021;23(1):14. DOI: 10.1208/s12248-020-00532-2.

 

Marcello A, Civra A, Milan Bonotto R, Nascimento Alves L, Rajasekharan S, Giacobone C, et al. The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. Redox Biol. 2020; 36:101682. DOI: 10.1016/j.redox.2020.101682.

 

Wang S, Li W, Hui H, Tiwari SK, Zhang Q, Croker BA, et al. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J. 2020;39(21):e106057. DOI: 10.15252/embj.2020106057.

 

Kočar E, Režen T, Rozman D. Cholesterol, lipoproteins, and COVID-19: Basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(2):158849. DOI: 10.1016/j.bbalip.2020.158849.


Enlaces refback

  • No hay ningún enlace refback.