ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Oxitocina y vasopresina: diferencias sexuales y sus implicaciones clínicas / Oxytocin and vasopressin: sexual differences and clinical implications

Ricardo Mondragón-Ceballos, Jorgelina Barrios-De Tomasi, Leonor Estela Hernández-López

Resumen


Resumen

La oxitocina y la vasopresina son similares en estructura química, pero difieren en sus funciones. Ambas se producen en diversas áreas del cerebro, se transportan a través del sistema porta hipofisiario a la hipófisis anterior y se distribuyen a sus órganos blanco actuando como hormonas. Estas fungen también como neuroreguladores, con  receptores dispersos en el septum lateral, la amígdala central, el hipocampo, el hipotálamo y el tronco encefálico, estructuras asociadas a la conducta socio-sexual en todos los vertebrados. Los sistemas vasopresinérgico y oxitocinérgico difieren entre los cerebros femenino y masculino. Aunado a esto los esteroides sexuales intervienen en la expresión de los genes para oxitocina, la síntesis de sus receptores y su liberación. Además, promueven o inhiben la transcripción de los genes para vasopresina. Ambos neuropéptidos participan en el reconocimiento social, el vínculo de pareja, la cognición y la agresión. La disrupción de los sistemas de estos neuromoduladores se suma a las causas de algunos desórdenes psiquiátricos, como la depresión, la esquizofrenia, el autismo y la personalidad limítrofe. Esta revisión está enfocada a describir las diferencias entre géneros, tanto de la síntesis, como la distribución de los receptores y los efectos que generan la oxitocina y la vasopresina en la conducta para comprender la prevalencia, la sintomatología y la respuesta a los tratamientos a dichas patologías.

 

Abstract

Oxytocin and vasopressin share a similar chemical structure but have different functions. Both hormones are produced in different brain areas, are transported through the hypophyseal portal system, pass to the anterior hypophysis, and released to reach their target organs. These hormones also act as neuromodulators, where its receptors are found in the lateral septum, the middle amygdala, the hippocampus, the hypothalamus, and the brain stem. These brain structures regulate socio-sexual behaviors in vertebrates. Moreover, the oxytocinergic and the vasopressin systems are sexually different. The sexual steroids promote oxytocin release and the oxytocin receptor synthesis, as well as promoting or inhibiting vasopressin release and its receptor genetic transcription. Both neuropeptides are involved in social recognition, male-female pair bonding, aggression, and cognition. Furthermore, the disruption or malfunctioning of the oxytocin and vasopressin systems adds to the causes of some psychiatric disorders like depression, schizophrenia, autism, and borderline personality.


Palabras clave


Hormonas Hipofisarias; Oxitocina; Factores Sexuales; Estradiol; Testosterona / Pituitary Hormones; Oxytocin; Sex Factors; Estradiol; Testosterone

Texto completo:

PDF

Referencias


Schäfer E, Vincent S. The physiological effects of extracts of the pituitary body. J Physiol. 1899;25(1):87.

Herring P. A contribution to the comparative physiology of the pituitary body. Q J Exp Physiol Transl Integr. 1908;1(3):261-80.

Lewis D, Miller J, Matthews S. The effects on blood-pressure of intravenous injections of extracts of the various anatomical components of the hypophysis. Arch Intern Med. 1911;7(6): 785-800.

Dale H. The action of extracts of the pituitary body. Biochem J. 1909;4(9):427-47. 5. Bell W. The pituitary bodyand the therapeutic value of the infundibular extract in shock, uterine atony and intestinal paresis. Br Med J. 1909;2(2553):1609.

Ott I, Scott J. The action of infundibulin upon the mammary secretion. Proc Soc Exp Biol Med. 1910;8(2):48-9.

Sharpey-Schafer E, Mackenzie K. The action of animal extracts on milk secretion. Proc R Soc London Ser B. 1911;568:16-22.

Gaines W. A contribution to the physiology physiology of lactation. Am J Physiol. 1915;38(2):285-312.

Kamm O, Aldrich T, Grote I, Rowe L, Bugbee E. The active principles of the posterior lobe of the pituitary gland. I. The demonstration of the presence of two active principles. II. the separation of the two principles and their concentration in the form of potent solid preparations. J Am Chem Soc. 1928;50 (2):573-601.

Ely F, Petersen WE. Factors involved in the ejection of milk. J Dairy Sci [Internet]. 1941;24(3):211-23. Disponible en: http:// dx.doi.org/10.3168/jds.S0022-0302(41)95406-1.

du Vigneaud V, Resslbr C, Swan JM, Roberts CW, Katsoyannis PG. The synthesis of oxytocin. J Am Chem Soc. 1954;76 (12):3115-21.

Carter C, Kenkel W, MacLean E, Wilson S, Perkeybile A, Yee J, et al. Is Oxytocin “Nature’s Medicine”? Pharmacol Rev. 2020;72(4):829-61.

Glavaš M, Gitlin-Domagalska A, Dębowski D, Ptaszyńska N, Łęgowska A, Rolka K. Vasopressin and its analogues: From natural hormones to multitasking peptides. Int J Mol Sci. 2022;23(6).

Veenema AH, Neumann ID. Central vasopressin and oxytocin release: Regulation of complex social behaviours. Prog Brain Res. 2008;170(08):261-76.

Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdalla, neuropeptides and chronic pain-related affective behaviors. Neuropharmacology. 2020;170:10852.

Volpi S, Rabadan-Diehl C, Aguilera G. Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress. 2004;7(2):75-83.

Fuchs U, Leipnitz C, Lippert TH. The action of oxytocin on sperm motility. In vitro experiments with bull spermatozoa. Clin Exp Obstet & Gynecol [Internet]. 1989;16(4):95-97. Disponible en: http://europepmc.org/abstract/MED/2627744.

Gimpl G, Fahrenholz F. The oxytocin receptor system: Structure, function, and regulation. Physiol Rev. 2001;81(2):629-83.

Cilz N, Cimerblit-Sabba A, Yong W. Oxytocin and vasopressin in rodent hippocampus. Genes, Brain Behav. 2019;18:E12535.

Soloff MS, Alexandrova M, Fernstrom MJ. Oxytocin receptors: Triggers for parturition and lactation? Science. 1979; 204(4399):1313-5.

Lundwall A, Olsson AYM. Semenogelin II gene is replaced by a truncated LINE1 repeat in the cotton-top tamarin. Biol Reprod. 2001;65(2):420-5.

Alwaal A, Breyer BN, Lue TF. Normal male sexual function: Emphasis on orgasm and ejaculation. Fertil Steril [Internet]. 2015;104(5):1051-60. Disponible en: http://dx.doi. org/10.1016/j.fertnstert.2015.08.033.

Argiolas A, Gessa GL. Central functions of oxytocin. Neurosci Biobehav Rev. 1991;15(2):217-31.

Filippi S, Vannelli GB, Granchi S, Luconi M, Crescioli C, Mancina R, et al. Identification, localization and functional activity of oxytocin receptors in epididymis. Mol Cell Endocrinol. 2002;193(1-2):89-100.

Gupta J, Russell RJ, Wayman CP, Hurley D, Jackson VM. Oxytocin-induced contractions within rat and rabbit ejaculatory tissues are mediated by vasopressin V 1A receptors and not oxytocin receptors. Br J Pharmacol. 2008;155(1):118-26.

Koshimizu T aki, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: From molecules to physiological systems. Physiol Rev. 2012; 92(4):1813-64.

Thibonnier M, Conarty DM, Preston J a, Plesnicher CL, Dweik R a, Erzurum SC. Oxytocin Receptors. 2013;140(3):1-9.

Maybauer MO, Maybauer DM, Enkhbaatar P, Traber DL. Physiology of the vasopressin receptors. Best Pract Res Clin Anaesthesiol. 2008;22(2):253-63. 

Moore FL, Lowry CA. Comparative neuroanatomy of vasotocin and vasopressin in amphibians and other vertebrates. Comp Biochem Physiol - C Pharmacol Toxicol Endocrinol. 1998;119(3):251-60.

Goodson JL, Bass AH. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Rev. 2001;35(3):246-65.

Goodson JL. The vertebrate social behavior network: Evolutionary themes and variations. Horm Behav. 2005;48(1 SPEC. ISS.):11-22.  

Buijs RM. Vasopressin and oxytocin-their role in neurotransmission. Pharmacol Ther. 1983;22(1):127-41.

De Vries GJ, Buds RM, Swaab DF. Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain-presence of a sex difference in the lateral septum. Brain Res. 1981;218 (1-2):67-78.

Ishunina TA, Swaab DF. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus; size changes in relation to age and sex. J Clin Endocrinol Metab. 1999;84(12):4637-44.

de Vries GJ. Sex differences in vasopressin and oxytocin innervation of the brain. Prog Brain Res. 2008;170(08):17-27.

Rood BD, Stott RT, You S, Smith CJW, Woodbury ME, De Vries GJ. Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol. 2013;521(10):2321-58.

Shapiro LE, Insel TR. Ontogeny of oxytocin receptors in rat forebrain: A quantitative study. Synapse. 1989;4(3):259-66.

Bale TL, Dorsa DM, Johnston CA. Oxytocin receptor mRNA expression in the ventromedial hypothalamus during the estrous cycle. J Neurosci. 1995;15(7I):5058-64.

Coirini H, Johnson A, McEwen B. Estradiol modulation of oxytocin binding in the ventromedial hypothalamic nucleous of male and female rats. Neuroendocrinology. 1989;50:193-8.

De Kloet ER, Voorhuis TAM, Elands J. Estradiol induces oxytocin binding sites in rat hypothalamic ventromedial nucleus. Eur J Pharmacol. 1985;118(1-2):185-6.

De Kloet ER, Voorhuis DAM, Boschma Y, Elands J. Estradiol modulates density of putative “oxytocin receptors” in discrete rat brain regions. Neuroendocrinology. 1986;44(4):415-21.

Quiñones-Jenab V, Jenab S, Ogawa S, Adan R, Burbach J, Pfaff D. Effects of estrogeno on oxytocin receptor messenger ribonucleic acid expression in the uterus, pituitary, and forebrain of the female rat. Neuroendocrinology. 1997;65:9-17.

Yao S, Bergan J, Lanjuin A, Dulac C. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. Elife. 2017;6:E31373.

Dumais K, Veenema A. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol. 2016;40:1-23.

Häussler H, Jirikowski G, Caldwell J. Sex differences among oxytocin-immunoreactive neuronal systems in the mouse hypothalamus. J Chem Neuroanat. 1990;3(4):271-6.

Qiao X, Yan Y, Wu R, Tai F, Hao P, Cao Y, et al. Sociality and oxytocin and vasopressin in the brain of male and female dominant and subordinate mandarin voles. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol. 2014;200(2): 149-59.

Insel T, Shapiro L. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Ann N Y Acad Sci. 1992;652(1):448-51.

Smeltzer MD, Curtis JT, Aragona BJ, Wang Z. Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett. 2006;394(2):146-51.

Uhl-Bronner S, Waltisperger E, Martínez-Lorenzana G, Condes Lara M, Freund-Mercier MJ. Sexually dimorphic expression of oxytocin binding sites in forebrain and spinal cord of the rat. Neuroscience. 2005;135(1):147-54.

Richard S, Zingg HH. The human oxytocin gene promoter is regulated by estrogens. J Biol Chem. 1990;265(11):6098-103.

Mohr E, Schmitz E. Functional characterization of estrogen and glucocorticoid responsive elements in the rat oxytocin gene. Mol Brain Res. 1991;9(4):293-8.

Dawood M, Ylikorkala O, Trivedi D, Fuchs F. Oxytocin in maternal circulation and amniotic fluid during pregnancy. J Clin Endocrinol Metab. 1979;43(3):429-34.

Giraldi A, Enevoldsen A, Wagner G. Oxytocin and the initiation of parturition. A review. Dan Med Bull. 1990;37(4):377-83.

Silber M, Larsson B, Uvnas-Moberg K. Oxytocin, somatostatin, insulin and gastrin concentrations vis-a-vis late pregnancy, breastfeeding and oral contraceptives. Acta Obs Gynecol Scand. 1991;70(4-5):283-9.

Meddle SL, Bishop VR, Gkoumassi E, Van Leeuwen FW, Douglas AJ. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology. 2007;148(10):5095-104.

Levine A, Zagoory-Sharon O, Feldman R, Weller A. Oxytocin during pregnancy and early postpartum: Individual patterns and maternal-fetal attachment. Peptides. 2007;28(6):1162-9.

MacKinnon AL, Carter CS, Feeley N, Gold I, Hayton B, Santhakumaran S, et al. Theory of mind as a link between oxytocin and maternal behavior. Psychoneuroendocrinology [Internet]. 2018;92:87-94. Disponible en: https://doi.org/10.1016/j. psyneuen.2018.03.018.

Carter CS. Oxytocin Pathways and the Evolution of Human Behavior. 2014;(August 2013):1-23.

Bredewold R, Veenema AH. Sex differences in the regulation of social and anxiety-related behaviors: insights from vasopressin and oxytocin brain systems. Curr Opin Neurobiol. 2018;49:132-40. 

Tribollet E, Barberis C, Arsenijevic Y. Distribution of vasopressin and oxytocin receptors in the rat spinal cord: Sex-related differences and effect of castration in pudendal motor nuclei. Neuroscience. 1997;78(2):499-509.

Carter CS. Oxytocin and sexual behavior. Neurosci Biobehav Rev. 1992;16(2):131-44.

Dhakar M, Stevenson E, Caldwell H. Oxytocin, vasopressin, and their interplay with gonado steroids. In: E C, Pfaff D, M K, editors. Oxytocin, vasopressin and related peptids in the regulation of behavior. New York: Cambridge University Press; 2013. p. 3-26.

Young LJ. Oxytocin and vasopressin receptors and species-typical social behaviors. Horm Behav. 1999;36(3):212-21.

Hammock EAD. Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology. 2015;40(1):24-42.

Yuen K, Garner J, Carson D, Keller J, Lembke A, Hyde S, et al. Plasma oxytocin concentrations are lower in depressed vs. healthy control women and are independent of cortisol. J Psychiatry Res. 2014;51:30-6.

Yang SY, Cho SC, Yoo HJ, Cho IH, Park M, Kim BN, et al. Association study between single nucleotide polymorphisms in promoter region of AVPR1A and Korean autism spectrum disorders. Neurosci Lett [Internet]. 2010;479(3):197-200. Disponible en: http://dx.doi.org/10.1016/j.neulet.2010.05.050.

LoParo D, Waldman ID. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Mol Psychiatry. 2015;20(5):640-6.

Cataldo I, Azhari A, Esposito G. A review of oxytocin and arginine-vasopressin receptors and their modulation of autism spectrum disorder. Front Mol Neurosci. 2018;11(February):1-20.

Skodol AE, Bender DS. Why are women diagnosed borderline more than men? Psychiatr Q. 2003;74(4):349-60.

Bertsch K, Schmidinger I, Neumann ID, Herpertz SC. Reduced plasma oxytocin levels in female patients with borderline personality disorder. Horm Behav [Internet]. 2013; 63(3):424-9. Disponible en: http://dx.doi.org/10.1016/j.yhbeh.2012.11.013.

Jobst A, Dehning S, Ruf S, Notz T, Buchheim A, Henning-Fast K, et al. Oxytocin and vasopressin levels are decreased in the plasma of male schizophrenia patients. Acta Neuropsychiatr. 2014;26(6):347-55.

Kokras N, Dalla C. Sex differences in animal models of psychiatric disorders. Br J Pharmacol. 2014;171(20):4595-619.

Rilling JK, DeMarco AC, Hackett PD, Chen X, Gautam P, Stair S, et al. Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology. 2014;39(1):237-48.

Demarchi L, Pawluski JL, Bosch OJ. The brain oxytocin and corticotropin-releasing factor systems in grieving mothers: What we know and what we need to learn. Peptides [Internet]. 2021;143:170593. Disponible en: https://hal.archives-ouvertes.fr/hal-03282465.

Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC. Oxytocin Improves “Mind-Reading” in Humans. Biol Psychiatry. 2007;61(6):731-3.

Domes G, Sibold M, Schulze L, Lischke A, Herpertz SC, Heinrichs M. Intranasal oxytocin increases covert attention to positive social cues. Psychol Med. 2013;43(8):1747-53.

Roschina O V., Levchuk LA, Boiko AS, Michalitskaya E V., Epimakhova E V., Losenkov IS, et al. Beta-endorphin and oxytocin in patients with alcohol use disorder and comorbid depression. J Clin Med. 2021;10(23).

Berends YR, Tulen JHM, Wierdsma AI, Van Pelt J, Feldman R, Zagoory-Sharon O, et al. Oxytocin and vasopressin in male forensic psychiatric patients with personality disorders and healthy controls. J Forensic Psychiatry Psychol. 2022;33 (1):130-51. Disponible en: https://doi.org/10.1080/14789949.2 021.1985158.

Abramova O, Zorkina Y, Ushakova V, Zubkov E, Morozova A, Chekhonin V. The role of oxytocin and vasopressin dysfunction in cognitive impairment and mental disorders. Neuropeptides. 2020;83(August):102079. Disponible en: https:// doi.org/10.1016/j.npep.2020.102079.


Enlaces refback

  • No hay ningún enlace refback.