ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Correlación entre el índice de choque y el índice anaerobio / Correlation between the shock index and the anaerobic index

Otoniel Toledo-Salinas, Eric Pereyra-Guzmán

Resumen


Resumen

Introducción:  el choque se define como una insuficiencia circulatoria aguda que ocasiona disfunción celular. El índice de choque (ICh) y el índice anaerobio o relación entre el gradiente veno-arterial de dióxido de carbono y la diferencia entre el contenido arterial y venoso de O2 [∆P(v-a)CO2/ ΔC(a-v)O2] son marcadores de hipoperfusión sistémica.

Objetivo: determinar si existe correlación entre el ICh y el índice anaerobio en pacientes con choque circulatorio.

Material y métodos: estudio observacional y prospectivo en pacientes con choque circulatorio. Se calcularon el ICh y el índice anaerobio al ingreso a la unidad de cuidados intensivos (UCI) y durante su estancia. Se calculó el coeficiente de correlación de Pearson y se exploró la asociación del ICh con la mortalidad con una regresión logística bivariada.

Resultados: se analizaron 59 pacientes de 55.5 (± 16.5) años, 54.3% hombres. El tipo de choque más frecuente fue el hipovolémico (40.7%). Tuvieron puntaje SOFA: 8.4 (± 3.2) y APACHE II: 18.5 (± 6). El ICh fue: 0.93 (± 0.32) y el índice anaerobio: 2.3 (± 1.3). La correlación global fue r = 0.15; al ingreso: r = 0.29; a las 6 horas: r = 0.19; a las 24 horas: r = 0.18; a las 48 horas: r = 0.44, y a las 72 horas: r = 0.66. El ICh > 1 al ingreso a la UCI tuvo una RM 3.8 (IC 95%: 1.31-11.02), p = 0.01.

Conclusiones: el ICh y el índice anaerobio tienen una correlación positiva débil durante las primeras 48 horas del choque circulatorio. El ICh > 1 es un posible factor de riesgo de muerte en pacientes con choque circulatorio.

 

Abstract

Background: Shock is defined as an acute circulatory insufficiency that causes cellular dysfunction. The shock index (SI) and the anaerobic index or the relationship between the veno-arterial gradient of carbon dioxide and the difference between the arterial and venous content of O2 [∆P(v-a)CO2/ ΔC(a-v)O2] are markers of systemic hypoperfusion.

Objective: To determine if there is a correlation between the SI and the anaerobic index in patients with circulatory shock.

Material and methods: Observational and prospective study in patients with circulatory shock. The SI and the anaerobic index were calculated at admission to the intensive care unit (ICU) and during their stay. Pearson’s correlation coefficient was calculated and the association of SI with mortality was explored with bivariate logistic regression.

Results: 59 patients aged 55.5 (± 16.5) years, 54.3% men, were analyzed. The most frequent type of shock was hypovolemic (40.7%). They had SOFA score: 8.4 (± 3.2) and APACHE II: 18.5 (± 6). The SI was: 0.93 (± 0.32) and the anaerobic index: 2.3 (± 1.3). Global correlation was r = 0.15; at admission r = 0.29; after 6 hours: r = 0.19; after 24 hours: r = 0.18; after 48 hours: r = 0.44, and after 72 hours: r = 0.66. The SI > 1 at ICU admission had an OR 3.8 (95% CI: 1.31- 11.02), p = 0.01.

Conclusions: The SI and the anaerobic index have a weak positive correlation during the first 48 hours of circulatory shock. The SI > 1 is a possible risk factor for death in patients with circulatory shock

 


Palabras clave


Choque; Enfermedad Crítica; Resultados de Cuidados Críticos; Puntuaciones en la Disfunción de Órganos / Shock; Critical Illness; Critical Care Outcomes; Organ Dysfunction Scores

Texto completo:

PDF

Referencias


 

Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014;40:1795-1815. doi: 10.1007/s00134-014-3525-z. 

 

Lanspa MJ, Brown SM, Hirshberg EL, Jones JP, Grissom CK.. Central venous pressure and shock index predict lack of hemodynamic response to volume expansion in septic shock: a prospective, observational study. J Crit Care 2012;27:609-15. https://doi.org/10.1016/j.jcrc.2012.07.021.

 

Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Critical Care 2015;19:S8. doi: 10.1186/cc14726.

 

Vallée F, Vallet B, Mathe O, Parraguette J, Mari Ar, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?. Intensive Care Med 2008;34:2218-25. https://doi.org/10.1007/s00134-008-1199-0.

 

Shaban M, Salahuddin N. Clarification on the Method of Calculating Central Venous-to-Arterial CO2 Difference/Arterial-Central Venous O2 Difference Ratio. Shock. 2017;48(6):690-691. doi: 10.1097/SHK.0000000000000922.

 

Marik P. Regional carbon dioxide monitoring to assess the adequacy of tissue perfusión. Current Op Crit Care 2005;11:245-51. doi: 10.1097/01.ccx.0000158091.57172.f9.

 

Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016 Feb;42(2):211-21. doi: 10.1007/s00134-015-4133-2.

 

Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272-7. doi: 10.1007/s00134-002-1215-8.

 

Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412-20. doi: 10.1097/CCM.0b013e318275cece. 

 

Allgöwer M, Burri C: Shock index. Dutsch Med Wochenschr 1967;92:1947-50. doi: 10.1055/s-0028-1106070.

 

Allgöwer M, Burri C: Shock-index. Ger Med Mon 1968;13:14-9.

 

Birkhahn RH, Gaeta TJ, Terry D, Bove JJ, Tloczkowski J. Shock index in diagnosing early acute hypovolemia. Am J Emerg Med. 2005;23(3):323-6. doi: 10.1016/j.ajem.2005.02.029.

 

Rady MY, Smithline HA, Blake H, Nowak R, Rivers E. A comparison of the shock index and conventional vital signs to identify acute, critical illness in the emergency department. Ann Emerg Med. 1994;24(4):685-90. doi: 10.1016/s0196-0644(94)70279-9.

 

Mutschler M, Nienaber U, Münzberg M, Wölfl C, Schoechl H, Paffrath T, et al. The Shock Index revisited - a fast guide to transfusion requirement? A retrospective analysis on 21,853 patients derived from the TraumaRegister DGU. Crit Care. 2013;17(4):R172. doi: 10.1186/cc12851.

 

Wira CR, Francis MW, Bhat S, Ehrman R, Conner D, Siegel M. The shock index as a predictor of vasopressor use in emergency department patients with severe sepsis. West J Emerg Med. 2014;15(1):60-6. doi: 10.5811/westjem.2013.7.18472.

 

Yussof SJ, Zakaria MI, Mohamed FL, Bujang MA, Lakshmanan S, Asaari AH. Value of Shock Index in prognosticating the short-term outcome of death for patients presenting with severe sepsis and septic shock in the emergency department. Med J Malaysia. 2012;67(4):406-11.

 

Cevik AA, Dolgun H, Oner S, Tokar B, Acar N, Ozakin E, et al. Elevated lactate level and shock index in nontraumatic hypotensive patients presenting to the emergency department. Eur J Emerg Med. 2015;22(1):23-8. doi: 10.1097/MEJ.0000000000000110.

 

Tseng J, Nugent K. Utility of the shock index in patients with sepsis. Am J Med Sci. 2015;349(6):531-5. doi: 10.1097/MAJ.0000000000000444.

 

Berger T, Green J, Horeczko T, Hagar Y, Garg N, Suarez A, et al. Shock index and early recognition of sepsis in the emergency department: pilot study. West J Emerg Med. 2013; 14(2):168-74. doi: 10.5811/westjem.2012.8.11546.

Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707-10. doi: 10.1007/BF01709751.

 

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818-29.

 

Roy-García Ivonne, Rivas-Ruiz Rodolfo, Pérez-Rodríguez Marcela, Palacios-Cruz Lino. Correlación: no toda correlación implica causalidad. Rev. alerg. Méx.  [revista en la Internet]. 2019  Sep [citado  2022  Ago  26] ;  66( 3 ): 354-360. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-91902019000300354&lng=es.  Epub 19-Feb-2020.  https://doi.org/10.29262/ram.v66i3.651.

 

Arnemann P, Seidel L, Ertmer C. Haemodynamic coherence - The relevance of fluid therapy. Best Pract Res Clin Anaesthesiol. 2016;30(4):419-427. doi: 10.1016/j.bpa.2016.11.003.

 

Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019;321(7):654-664. doi: 10.1001/jama.2019.0071.

 

Wang M, Liu T, Niu Z, Zuo J, Qi D. Utility of venous-to-arterial carbon dioxide changes to arteriovenous oxygen content ratios in the prognosis of severe sepsis and septic shock: A systematic review and meta-analysis. Hong Kong Journal of Emergency Medicine. 2021;28(4):241-253. doi:10.1177/1024907921994970.

 

 

 

 

 

 

 


Enlaces refback

  • No hay ningún enlace refback.