Resumen
El síndrome de Down (SD) es la aneuploidía de autosomas más frecuente y la primera causa de discapacidad intelectual de origen genético a nivel mundial. Se identifica como una condición de vida en la que la variabilidad de sus manifestaciones clínicas y la gravedad del fenotipo tienen un origen multifactorial. La prevalencia mundial oscila entre 1 por cada 700 nacidos vivos y se han propuesto diversos factores de riesgo que pueden estar implicados en el origen del SD. Nuestro objetivo fue describir las actualizaciones con respecto a los factores de riesgo en el origen o causa citogenética del SD. Se realizó una revisión narrativa en la cual se condujo una búsqueda bibliográfica en el periodo de enero a junio de 2022 en bases de datos como PubMed, EBSCO, Medigraphic, ClinicalKey y metabuscadores como Elsevier y Evidence Alerts. Se incluyeron únicamente artículos publicados en los últimos 10 años en idioma inglés y español. Los términos de búsqueda utilizados fueron: Down syndrome, risk factors, prevention. Aunque el SD es una patología cromosómica muy frecuente a nivel internacional, no existe un factor de riesgo único en el origen de la no disyunción meiótica o mitótica del cromosoma 21, sino que cada uno de los factores de riesgo asociados contribuye en mayor o menor medida a una predisposición citogenética en la etiología de la trisomía 21. Durante la revisión se identificó que el principal factor de riesgo establecido asociado a SD sigue siendo la edad materna avanzada (≥ 35 años).
Abstract
Down syndrome (DS) is the most common autosomal aneuploidy and the leading cause of intellectual disability of genetic origin worldwide. It is identified as a syndrome in which the variability of its clinical manifestations and the severity of its phenotype have a multifactorial origin. Worldwide prevalence ranges between 1 per 700 live births and several factors that may be involved in the origin of DS have been proposed. Our objective was to describe updates regarding risk factors in the cytogenetic origin or cause of DS. We conducted a narrative review study in which a literature search was carried out from January to June 2022 in databases such as PubMed, EBSCO, Medigraphic, ClinicalKey, and meta-search engines such as Elsevier and Evidence Alerts. Only articles published in the last 10 years in English and Spanish were included. The search terms used were: Down syndrome, risk factors, prevention. Although DS is a very common chromosomal pathology worldwide, there is no single risk factor at the origin of meiotic or mitotic nondisjunction of chromosome 21, but rather each of the associated risk factors contributes to a greater or lesser degree to a cytogenetic predisposition in the etiology of trisomy 21. During the review it was identified that the main established risk factor associated with DS is still advanced maternal age (≥ 35 years).
Akhtar F, Bokhari S. Down Syndrome. Treasure Island: StatPearls; 2022: Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK526016/
Díaz-Cuéllar S, Yokoyama-Rebollar E, del Castillo-Ruiz V. Genómica del síndrome de Down. Acta Pediatr Mex. 2016;37(5). doi: 10.18233/APM37No5pp289-296.
Vazquez-Hernández PI, Cárdenas-Conejo A, Catalán-Ruiz MA, et al. Multiple Organ Failure Associated with SARS-CoV-2 Infection in a Child with Down Syndrome: Is Trisomy 21 Associated with an Unfavourable Clinical Course? Case Rep Pediatr. 2021;2021:1-4. doi: 10.1155/2021/5893242.
Sierra M del C, Navarrete E, Canún S, et al. Prevalencia del síndrome de Down en México utilizando los certificados de nacimiento vivo y de muerte fetal durante el periodo 2008-2011. Bol Med Hosp Infant Mex. 2014;71(5):1-6.
Corona-Rivera JR, Martínez-Macías FJ, Bobadilla-Morales L, et al. Prevalence and risk factors for Down syndrome: A hospital-based single-center study in Western Mexico. Am J Med Genet A. 2019;179(3):435-41. doi: 10.1002/ajmg.a.61044.
Coppedè F. Risk factors for Down syndrome. Arch Toxicol. 2016;90(12):2917-29. doi: 10.1007/s00204-016-1843-3.
Horan TS, Pulcastro H, Lawson C, et al. Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr Biol. 2018;28(18):2948-54. doi: 10.1016/j.cub.2018.06.070.
Antonarakis SE, Skotko BG, Rafii MS, et al. Down syndrome. Nat Rev Dis Primers. 2020;6(1):9. doi: 10.1038/s41572-019-0143-7.
Vashist y Neelkamal, M. Edad materna: un factor de controversia en la trisomía 21. Rev Med Int Sindr Down. 2013;17(1):8-12.
Olagunju AA, Masud MA. From the Genesis of Down Syndrome: What we know and what we still need to know. Clin Psychiatry. 2021;7(1):1-5.
Gómez-Álvarez N, Venegas-Mortecinos A, Zapata-Rodríguez V, et al. Efecto de una intervención basada en realidad virtual sobre las habi lidades motrices básicas y control postural de niños con Síndrome de Down. Rev Chil Pediatr. 2018;89(6):747-52. doi: 10.4067/S0370-41062018005001202.
Lizama Calvo M, Cerda Lorca J, Monge Iriarte M, et al. Morbimortalidad hospitalaria en niños con síndrome de Down. Rev Chil Pediatr. 2016;87(2):102-9. doi: 10.1016/j.rchipe.2015.06.026.
Benavides-Lara A. Prevalencia al nacimiento de síndrome de Down, según edad materna en Costa Rica, 1996-2016. Acta Med Costarric. 2019;61(4):177-82. doi: 10.51481/amc.v61i4.1049.
Sotonica M, Mackic-Djurovic M, Hasic S, et al. Association of Parental Age and the Type of Down Syndrome on the Territory of Bosnia and Herzegovina. Med Arch. 2016;70(2):88-91. doi: 10.5455/medarh.2016.70.88-91.
Schliep KC, Feldkamp ML, Hanson HA, et al. Are paternal or grandmaternal age associated with higher probability of trisomy 21 in offspring? A population-based, matched case-control study, 1995-2015. Paediatr Perinat Epidemiol. 2021;35(3):281-91. doi: 10.1111/ppe.12737.
Keen C, Hunter JE, Allen EG, et al. The association between maternal occupation and down syndrome: A report from the national Down syndrome project. Int J Hyg Environ Health. 2020;223(1):207-13. doi: 10.1016/j.ijheh.2019.09.001.
Hildebrand E, Källén B, Josefsson A, et al. Maternal obesity and risk of Down syndrome in the offspring. Prenat Diagn. 2014;34(4):310-5. doi: 10.1002/pd.4294.
Ray A, Oliver TR, Halder P, et al. Risk of Down syndrome birth: Consanguineous marriage is associated with maternal meiosis-II nondisjunction at younger age and without any detectable recombination error. Am J Med Genet A. 2018;176(11):2342-9. doi: 10.1002/ajmg.a.40511.
Ray A, Hong CS, Feingold E, et al. Maternal Telomere Length and Risk of Down Syndrome: Epidemiological Impact of Smokeless Chewing Tobacco and Oral Contraceptive on Segregation of Chromosome 21. Public Health Genomics. 2016;19(1):11-8. doi: 10.1159/000439245.
Albizua I, Rambo-Martin BL, Allen EG, et al. Association between telomere length and chromosome 21 nondisjunction in the oocyte. Hum Genet. 2015 Nov;134(11-12):1263-70. doi: 10.1007/s00439-015-1603-0.
Kaur A, Kaur A. Maternal MTHFR polymorphism (677 C-T) and risk of Down's syndrome child: meta-analysis. J Genet. 2016;95(3):505-13. doi: 10.1007/s12041-016-0657-7.
Coppedè F, Lorenzoni V, Migliore L. The reduced folate carrier (RFC-1) 80A>G polymorphism and maternal risk of having a child with Down syndrome: a meta-analysis. Nutrients. 2013;5(7):2551-63. doi: 10.3390/nu5072551.
Nagy GR, Győrffy B, Nagy B, et al. Lower risk for Down syndrome associated with longer oral contraceptive use: a case-control study of women of advanced maternal age presenting for prenatal diagnosis. Contraception. 2013;87(4):455-8. doi: 10.1016/j.contraception.2012.08.040.
Horányi D, Babay LÉ, Rigó J Jr, et al. Effect of extended oral contraception use on the prevalence of fetal trisomy 21 in women aged at least 35 years. Int J Gynaecol Obstet. 2017;138(3):261-6. doi: 10.1002/ijgo.12238.