ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Uso potencial de liposomas en el tratamiento contra la tuberculosis / Potential use of liposomes in tuberculosis treatment

Yolanda Monserrath Jacobo-Delgado, Gabriela Navarro Tovar, Bruno Rivas-Santiago

Resumen


Resumen

La tuberculosis se ubica entre las enfermedades infecciosas con mayor mortalidad y morbilidad a nivel mundial, por detrás de la actual pandemia de COVID-19. Puede afectar a cualquier órgano, aunque la principal forma de infección es respiratoria. La correcta activación de la respuesta inmune logra eliminar o contener a la bacteria en un estado de latencia; sin embargo, la enfermedad activa es progresiva y debe ser tratada bajo estricta supervisión. El tratamiento para la tuberculosis es prolongado y consiste en una combinación de varios antifímicos; por lo tanto, se asocia a la aparición de una gran diversidad de efectos adversos. Estos efectos son la principal causa de abandono terapéutico, que a su vez facilita la aparición de cepas farmacorresistentes. De ahí la importancia de desarrollar nuevas estrategias terapéuticas con el objetivo de disminuir la dosis del fármaco o bien su tiempo de administración. Para lograr estos objetivos se ha propuesto el uso de nanovehículos, que son sistemas de liberación de fármacos controlados y dirigidos. Específicamente, los liposomas son formulaciones que presentan ventajas al ser administrados por vía respiratoria, ya que esta facilita el alcance a la mucosa respiratoria y a los pulmones, que es el principal órgano afectado en la infección por tuberculosis. En la presente revisión se analiza el uso de nanovehículos como sistemas efectivos de entrega de fármacos, así como las formulaciones que se encuentran en estudio. También se proponen perspectivas para la aplicación de la nanotecnología en el desarrollo de nuevos tratamientos farmacológicos para la tuberculosis.

 

Abstract

Tuberculosis is among the infectious diseases with the highest mortality and morbidity worldwide, behind the COVID-19 pandemic. It can affect any organ, although the respiratory infection is the most common. The correct activation of the immune response eliminates or contain the bacteria; however, the active disease is progressive and must be treated under strict supervision. Treatment for tuberculosis is prolonged and consists of a combination of several antibiotics associated with a wide variety of adverse effects. These effects are the main cause of therapeutic abandonment, which facilitates the appearance of drug-resistant strains. Hence the importance of developing new therapeutic strategies to reduce the dose of the drug or its administration time. To achieve these objectives, the use of nano-vehicles, which are controlled and directed drug release systems, has been proposed. Specifically, liposomes are formulations that have advantages when administered by the respiratory route since they facilitate the reach of the respiratory mucosa and the lungs, which are the main organs affected by tuberculosis. This review analyzes the use of nano-vehicles as effective drug delivery systems and the formulations under study. Perspectives for the application of nanotechnology in the development of new pharmacological treatments for tuberculosis are also proposed.


Palabras clave


Tuberculosis; Liposomas; Farmacorresistencia Microbiana / Tuberculosis; Liposomes; Drug Resistance, Microbial

Texto completo:

PDF

Referencias


World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization; 2021. Disponible en: https://www.who.int/publications/i/item/9789240037021.

Moreira JD, Koch BEV, van-Veen S, et al. Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Front Immunol. 2020;11:36.

Jilani TN,  Avula A, Zafar-Gondal A, et al. Active Tubercolosis. Treasure Island, FL: StatPearls Publishing; 2023.

Maertzdorf J, Tönnies M, Lozza L, et al. Mycobacterium tuberculosis Invasion of the Human Lung: First Contact. Front Immunol. 2018;9:1346.

Dheda K, Schwander SK, Zhu B, et al. The immunology of tuberculosis: from bench to bedside. Respirology. 2010;15(3):433-50.

De-Waal AM, Hiemstra PS, Ottenhoff TH, et al. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax. 2022;77(4):408-16.

Rendón A, Soto-Monciváis B, Olivares-Martínez P, et al. Coexistencia de tuberculosis y Covid-19. Salud Publica Mex. 2021;63(3):328.

Antonio-Arques V, Franch-Nadal J, Cayla JA. Diabetes and tuberculosis: A syndemic complicated by COVID-19. Med Clin. 2021;157(6):288-93.

Norma Oficial Mexicana NOM-006-SSA2-2013 para la prevencion y control de la tuberculosis. México: Diario Oficial de la Federación; 2013. Disponible en: https://dof.gob.mx/nota_detalle.php?codigo=5321934&fecha=13/11/2013#gsc.tab=0.

Lanido-Laborín R. Guía para la Atención de Personas con Tuberculosis Resistente a Fármacos. México: Secretaría de Salud; 2016. 37 diapositivas. Disponible en: http://www.cenaprece.salud.gob.mx/programas/interior/micobacteriosis/descargas/pdf/GuiaDeLaOMSparaTratamientoDeTB.pdf.

Dean AS, Tosas-Auguet O, Glaziou P, et al. 25 years of surveillance of drug-resistant tuberculosis: achievements, challenges, and way forward. Lancet Infect Dis. 2022;22(7):191-6.

Organización Panamericana de la Salud. Directrices unificadas de la OMS sobre el tratamiento de la tuberculosis farmacorresistente. Washington: World Health Organization; 2020. 107 p.

Buya AB, Witika BA, Bapolisi AM, et al. Application of Lipid-Based Nanocarriers for Antitubercular Drug Delivery: A Review. Pharmaceutics. 2021;13(12):2041.

Pattni BS, Chupin VV, Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev. 2015;115(19):10938-66.

Patel R, Kaki M, Potluri VS, et al. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Hum Vaccin Immunother. 2022;18(1):2002083.

Ortega-Berlanga B, Gonzalez C, Navarro-Tovar G. Recent Advances in the Use of Lipid-Based Nanoparticles Against Glioblastoma Multiforme. Arch Immunol Ther Exp (Warsz). 2021;69(1):8.

Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal. 2021;192:113642.

Almeida B, Nag OK, Rogers KE, et al. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules. 2020;25(23):5672.

Mehanna MM, Mohyeldin SM, Elgindy NA. Respirable nanocarriers as a promising strategy for antitubercular drug delivery. J Control Release. 2014;187:183-97.

Abu-Lila AS, Ishida T. Systems: Design Optimization and Current Applications. Biol Pharm Bull. 2017;40(1):1-10.

Rinaldi F, Hanieh PN,  Sennato S,  et al. Rifampicin-Liposomes for Mycobacterium abscessus Infection Treatment: Intracellular Uptake and Antibacterial Activity Evaluation. Pharmaceutics. 2021;13(7):1070.

Lima-Salviano T, Dos-Santos Macedo DC, De-Siqueira Ferraz Carvalho R, et al. Fucoidan-Coated Liposomes: A Target System to Deliver the Antimicrobial Drug Usnic Acid to Macrophages Infected with Mycobacterium tuberculosis. J Biomed Nanotechnol. 2021;17(8):1699-710.

Bazán-Henostroza MA, Curo-Melo KJ, Nishitani-Yukuyama M, et al. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Coloides Surf A Physicochem Eng Asp. 2020;597:124755.

Chimote G, Banerjee R. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis. J Biomed Mater Res B Appl Biomater. 2010;94(1):1-10.

Nkanga CI, Roth M, Walker RB, et al. Co-Loading of Isoniazid-Grafted Phthalocyanine-in-Cyclodextrin and Rifampicin in Crude Soybean Lecithin Liposomes: Formulation, Spectroscopic and Biological Characterization. J Biomed Nanotechnol. 2020;16(1):14-28.

Adeagbo BA, Akinlalu AO, Phan T, et al. Controlled Covalent Conjugation of a Tuberculosis Subunit Antigen (ID93) to Liposome Improved In Vitro Th1-Type Cytokine Recall Responses in Human Whole Blood. ACS Omega. 2020;5(48):31306-13.

Tian M, Zhou Z, Tan S, et al. Formulation in DDA-MPLA-TDB Liposome Enhances the Immunogenicity and Protective Efficacy of a DNA Vaccine against Mycobacterium tuberculosis Infection. Front Immunol. 2018;9:310.

Prideaux B, Via LE, Zimmerman MD, et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med. 2015;21(10):1223-7.

Rodriguez-Carlos A, Martinez-Gutierrez F, Torres-Juarez F, et al. Antimicrobial Peptides-based Nanostructured Delivery Systems: An Approach for Leishmaniasis Treatment. Curr Pharm Des. 2019;25(14):1593-603.

Nasiruddin M, Neyaz MK, Das S. Nanotechnology-Based Approach in Tuberculosis Treatment. Tuberc Res Treat. 2017;2017:4920209.

Da-Silva PB, De-Freitas ES, Bernegossi J, et al. Nanotechnology-Based Drug Delivery Systems for Treatment of Tuberculosis--A Review. J Biomed Nanotechnol. 2016;12(2):241-60.

Singh J, Garg T, Rath G, et al. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review. Drug Deliv. 2016;23(5):1676-98.

Abdel-Aziz MM, Elella MHA, Mohamed RR. Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol. 2020;142:244-53.

Amarnath-Praphakar R, Jeyaraj M, Ahmed M, et al. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int J Biol Macromol. 2018;118:1627-38.

Yunus-Basha R, T-S SK, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym. 2019;218:53-62.

Soria-Carrera H, Lucia A, De-Matteis L, et al. Polypeptidic Micelles Stabilized with Sodium Alginate Enhance the Activity of Encapsulated Bedaquiline. Macromol Biosci. 2019;19(4):e1800397.

Rawal T, Patel S, Butani S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci. 2018;124:273-87.

Cunha L, Rodrigues S, Rosa-Da Costa AM, et al. Inhalable chitosan microparticles for simultaneous delivery of isoniazid and rifabutin in lung tuberculosis treatment. Drug Dev Ind Pharm. 2019;45(8):1313-20.

Chono S, Kaneko K, Yamamoto E, et al. Effect of surface-mannose modification on aerosolized liposomal delivery to alveolar macrophages. Drug Dev Ind Pharm. 2010;36(1):102-7.

Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res. 2021;11(3):1218-35.


Enlaces refback

  • No hay ningún enlace refback.