Resumen
Introducción: la enfermedad por coronavirus del 2019 (COVID-19) puede causar lesión cardiaca, probablemente asociada con miocarditis e isquemias inducidas por la infección. El daño miocárdico conduce a la liberación de citocinas proinflamatorias y a la activación de mecanismos adaptativos de tipo autoinmune por medio de la limitación molecular.
Objetivo: evaluar la mortalidad asociada a daño miocárdico en pacientes hospitalizados con COVID-19 confirmado mediante la medición de troponina I.
Material y métodos: estudio de casos y controles anidado en una cohorte de los pacientes de un hospital de tercer nivel. Se utilizó estadística descriptiva para caracterizar a la población. Las variables cualitativas se expresaron como proporciones y rangos, las cuantitativas como medias y desviación estándar. Para comparar la mortalidad entre pacientes con y sin daño miocárdico se utilizó la prueba exacta de Fisher. Valores de p < 0.05 fueron significativos.
Resultados: de junio del 2020 a agosto del 2020 se enrolaron 28 pacientes que cumplieron los criterios de selección, de los cuales 15 no tuvieron daño miocárdico y 13 tuvieron daño miocárdico evaluado con la medición de troponina sérica. Se encontró fuerte asociación entre la mortalidad y la presencia de daño miocárdico, ya que se registró mortalidad del 20% (3/15) entre los pacientes sin daño miocárdico y de 92.3% (12/13) entre los que tuvieron daño miocárdico (prueba exacta de Fisher: p < 0.005).
Conclusiones: la mortalidad en pacientes con COVID-19 se asocia a daño miocárdico evaluado a través de la medición de troponina I.
Abstract
Background: Coronavirus disease 2019 (COVID-19) can cause cardiac injury, probably associated with myocarditis and ischemia induced by the infection. Myocardial damage leads to the liberation of proinflammatory cytokines and to the activation of autoimmune adaptive mechanisms through molecular limitation.
Objective: To assess mortality associated with myocardial damage in hospitalized patients with COVID-19 confirmed by troponin I measurement.
Material and methods: Case-control study nested in a cohort of patients of a third-level hospital. Descriptive statistics were used to characterize the population. Qualitative variables were expressed as proportions and ranges, quantitative variables as means and standard deviation. Fisher’s exact test was used to compare mortality between patients with and without myocardial damage. A p value < 0.05 was considered significant.
Results: From June 2020 to August 2020, 28 patients who met the selection criteria were enrolled, out of which 15 had no myocardial damage and 13 had myocardial damage assessed by serum troponin measurement. A strong association was found between mortality and the presence of myocardial damage, since mortality was 20% (3/15) among patients without myocardial damage and 92.3% (12/13) among those with myocardial damage (Fisher’s exact test, p < 0.005).
Conclusion: Mortality in patients with COVID-19 is associated with myocardial damage assessed by troponin I measurement.
Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. doi: 10.1001/jamacardio.2020.0950.
Task Force for the management of COVID-19 of the European Society of Cardiology. European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1-epidemiology, pathophysiology, and diagnosis. Eur Heart J. 2022;43(11): 1033-58. doi: 10.1093/eurheartj/ehab696.
Zhang F, Yang D, Li J, Gao P, Chen T, Cheng Z, et al. Myocardial injury is associated with in – hospitality mortality of confirmed or suspected COVID-19 in Wuhan China: A single center retrospective cohort study. Med Rxiv. 2020. doi: 10.1101/2020.03.21.20040121.
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X.
Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8. doi: 10.1001/jamacardio.2020.1017.
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 2020;5(7): 831-40. doi: 10.1001/ jamacardio.2020.1286.
Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020; 45(3):230-2. doi: 10.1007/s00059-020-04909-z.
Flores D, Walter J, Wussler D, Kozhuharov N, Nowak A, Dinort J, et al. Direct comparison of high-sensitivity cardiac troponin t and i for prediction of mortality in patients with pneumonia. J Clin Chem Lab Med. 2019;2(2):1000131.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020. 395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3.
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5):846-8. doi: 10.1007/s00134-020-05991-x.
Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323 (16):1612-4. doi: 10.1001/jama.2020.4326.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323 (11):1061-9. doi: 10.1001/jama.2020.1585,
Chaomin Wu, Xianglin Hu. Heart Injury signs are associates with higher and earlier mortality in coronavirus disease 2019 (COVID-19). medRxiv. 2020;03.21.20040121. doi: https://doi. org/10.1101/2020.03.21.20040121.
Comité Nacional de Vigilancia Epidemiológica. Aviso epidemiológico /CONAVE/04/2020/COVID-19. México: Secretaría de Salud; 20 de febrero de 2020. Disponible en: https://www. gob.mx/cms/uploads/attachment/file/537574/AvisoEpidemiol_ gico_COVID19_27022020_FINAL.pdf.
Thygesen K, Mair J, Katus H, Plebani M, Venge P, Collinson P, et al.; Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care: Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J. 2010;31(18):2197-204. doi: 10.1093/ eurheartj/ehq251.
Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al.; Study Group on Biomarkers in Cardiology of ESC Working Group on Acute Cardiac Care: How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012;33(18):2252-7. doi: 10.1093/eurheartj/ehs154.
White HD. Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011;57(24):2406-8. doi: 10.1016/j.jacc.2011.01.029.
Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care.2018;7(6)553- 60. doi: 10.1177/2048872617748553.
Giannitsis E, Katus HA. Cardiac troponin level elevations not related to acute coronary syndromes. Nat Rev Cardiol. 2013; 10(11):623-34. doi: 10.1038/nrcardio.2013.129.
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al.; Grupo ejecutivo en representación del grupo de trabajo de la Sociedad Europea de Cardiología (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) para la definición universal del infarto de miocardio. Consenso ESC 2018 sobre la cuarta definición universal del infarto de miocardio. Rev Esp Cardio. 2019;72(1)72:e1-27.
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60. doi: 10.1038/s41569-020-0360-5.
Haeusler IL, Chan XHS, Guérin PJ, White NJ. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med. 2018;16(1): 200. doi: 10.1186/s12916-018-1188-2.
Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent Guidance for Navigating and Circumventing the QTc-Prolonging and Torsadogenic Potential of Possible Pharmaco-therapies for Coronavirus Disease 19 (COVID-19). Mayo Clin Proc. 2020; 95(6):1213-21. doi: 10.1016/j.mayocp.2020.03.024.
Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. doi: 10.1093/eurheartj/ehaa190.
Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Coll Cardiol. 2020;75(18):235271. doi: 10.1016/j.jacc.2020.03.031.
Santoso A, Pranata R, Wibowo A, Al-Farabi MJ, Huang I, Antariksa B. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: A meta-analysis. Am J Emerg Med. 2021;44:352-7. doi: 10.1016/j.ajem.2020.04.052.
Lakkireddy DR, Chung MK, Gopinathannair R, Patton KK, Gluckman TJ, Turagam M, et al. Guidance for cardiac electrophysiology during the COVID-19 pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Heart Rhythm. 2020;17(9):e233-41. doi: 10.1016/j.hrthm.2020.03.028.
Hayek S. Proposed management of Acute COVID-19 cardiovascular syndrome. American College of Cardiology; April 27, 2020. Disponible en: https://www.acc.org/latest-in-cardiology/ten-points-to-remember/2020/04/27/13/36/ description-and-proposed-management-of-the-acute.
Chapman AR, Adamson PD, Mills NL. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart. 2017;103(1):10-8. doi: 10.1136/heartjnl -2016-309530.