ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Repetitividad de los flujos espiratorios de la espirometría / Repeatability of spirometry′s expiratory flows

Luis Efrén Santos-Martínez, José Viennue Ávila- Gómez, Adriana Ordoñez-Reyna, Mónica Yuridia-Diana Flores-Morales, Javier Quevedo-Paredes

Resumen


Resumen

Introducción: la calidad de la espirometría se estima con criterios de aceptabilidad y repetitividad. La repetitividad aceptada por consenso es < 0.150 L.

Objetivo: conocer la repetitividad en espirometrías de calidad A.

Material y métodos: diseño transversal analítico. Se obtuvieron las variables demográficas y las 3 mejores curvas de espirometría con perfil normal, que sugiriera restricción y obstrucción bronquial de sujetos consecutivos de ambos géneros de 18 a 80 años. La repetitividad se analizó con la diferencia de medias (sesgo) y el coeficiente de correlación intraclase.

Resultados: se aceptaron 630 curvas de 210 sujetos. Edad grupal 60 ± 15 años. Predominio femenino 113 (53.8%), ocupación: servicios domésticos 61 (29%) y con enfermedad pulmonar obstructiva crónica 70 (33.4%). Las diferencias en las curvas fueron < 0.150 L. Las diferencias medias (sesgo) y el coeficiente de correlación intraclase (intervalo de confianza al 95%, IC 95%) del volumen espiratorio forzado en el primer segundo fueron: maniobra 1 frente a 2: −0.01 (0.13, −0.14), 0.997 (IC 95% 0.996, 0.998); maniobra 2 frente a 3: 0.00 (0.13, −0.13), 0.997 (IC 95% 0.996, 0.998), y maniobra 1 frente a 3: −0.00 (0.16, −0.17), 0.995 (IC 95% 0.994, 0.996). La capacidad vital forzada: maniobra 1 frente a 2: −0.01 (0.17, −0.18), 0.996 (IC 95% 0.995, 0.997); maniobra 2 frente a 3: 0.01 (0.17, −0.16), 0.997 (IC 95% 0.0.996, 0.998), y maniobra 1 frente a 3: −0.00 (0.18, −0.19), 0.996 (IC 95% 0.995, 0.997).

Conclusión: la repetitividad obtenida en espirometrías con calidad A valida el uso del criterio de repetitividad de 0.150 L.

 

Abstract

Background: The quality of the spirometry is estimated with criteria of acceptability and repeatability. The repeatability criteria accepted by consensus is < 0.150 L.

Objective: To know the repeatability in quality A spirometry.

Material and methods: Analytical cross-sectional design. The demographic variables and the 3 best spirometry curves with normal, suggestive of restriction and bronchial obstruction profiles were obtained from consecutive subjects of both genders from 18 to 80 years of age. The repeatability was analyzed with the mean difference (bias) and the intraclass correlation coefficient.

Results: 630 curves from 210 subjects were accepted. Group age 60 ± 15 years. Female predominance 113 (53.8%), occupation: domestic services 61 (29%), and diagnosed with chronic obstructive pulmonary disease: 70 (33.4%). The differences in the curves were < 0.150 L. The mean difference (bias) and the intraclass correlation coefficient (95% confidence interval, 95% CI) of the forced expiratory volume in the first second were 1 vs. 2 maneuver: −0.01 (0.13, −0.14), 0.997 (95% CI 0.996, 0.998); 2 vs. 3 maneuver: 0.00 (0.13, −0.13), 0.997 (95% CI 0.996, 0.998), and maneuver 1 vs. 3: −0.00 (0.16, −0.17), 0.995 (95% CI 0.994, 0.996). Forced vital capacity: 1 vs. 2 maneuver: −0.01 (0.17, −0.18), 0.996 (95% CI 0.995, 0.997); 2 vs. 3 maneuver: 0.01 (0.17, −0.16), 0.997 (95% CI 0.0.996, 0.998), and maneuver 1 vs. 3: −0.00 (0.18, −0.19), 0.996 (95% CI 0.995, 0.997).

Conclusion: The repeatability obtained in spirometry with quality A validates the use of the repeatability criterion of 0.150 L.


Palabras clave


Espirometría; Pruebas de Función Pulmonar; Fenómenos Fisiológicos Respiratorios; Volumen Espiratorio Forzado; Reproducibilidad de Resultados / Spirometry; Respiratory Function Tests; Respiratory Physiological Phenomena; Forced Expiratory Volume

Texto completo:

PDF PUBMED DOI

Referencias


Lopes AJ. Advances in spirometry testing for lung function analysis. Expert Rev Respir Med. 2019;13(6):559-69. doi: 10.1080/17476348.2019.1607301.

Gibson PG. Spirometry, you have an image problem! Respirology. 2023;28(6):577. doi: 10.1111/resp.14505.

Fujii M, Nishina D, Bessho R. Pre-operative assessment of lung function test and outcomes after cardiac surgery. Heart Surg Forum. 2020;23(2);E245-9. doi: 10.1532/hsf.2791.

Soriano JB, Abajobir AA, Abate KH, et al. Global, and GBD 2015 Chronic respiratory disease collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived, with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet Respir Med. 2017;5(9): 691-706. doi: 10.1016/S2213-2600(17) 30293-X.

Van de Hei SJ, Flokstra-de Blok BMJ, Baretta HJ, et al. Quality of spirometry and related diagnosis in primary care with a focus on clinical use. NPJ Prim Care Respir Med. 2020;30(1):22. doi: 10.1038/s41533-020-0177-z.

Wells CD, Joo MJ. COPD y asthma: Diagnostic accuracy requires spirometry. J Fam Pract. 2019;68(2):76-81.

Stanojevic S, Kaminsky DA, Miller MR, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022;60(1):2101499. doi: 10.1183/13993003.01499-2021.

Nicholson PJ. The updated ATS/ERS spirometry technical standards. Occup Med (Lond). 2020;70(3):146-8. doi: 10.1093/occmed/kqaa030.

Graham BL, Steenbruggen I, Miller MR, et al. Standarization of spirometry 2019 Update. An official American Thoracic Society and European Respiratory Society technical statement. 2019;200(8): e70-88. doi: 10.1164/rccm.201908-1590ST.

Schneider I, Rodwell L, Baum S, et al. Assesing spirometry competence through certification in community-based healthcare settings in Australia and New Zealand: A position paper of the Australian and New Zealand Society of Respiratory Science. Respirology. 2021;26(2):147-52. doi: 10.1111/resp.13987.

Wang YM, Chen WY, Jian WH, et al. [Standardization of spirometry updated in China and international: comparison and interpretation of the key updates] [Article in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi. 2022;45(3):250-4. doi: 10.3760/cma.j.cn112147-20210412-00244.

Benítez‑Pérez RE, Torre‑Bouscoulet L, Villca‑Ala N, et al. Espirometría: recomendaciones y procedimiento. Neumol Cir Torax. 2019; 78 (Supl 2): S97-112. doi: 10.35366/NTS192C.

Enright PL, Beck KC, Sherill DL. Repeatability of Spirometry in 18 000 adult patients. Am J Respir Crit Care Med. 2004;169:235-8. doi:10.1164/rccm.200204-347OC.

Gutiérrez M, Beroíza T, Borzone G, et al. Espirometría: Manual de procedimientos. SER Chile 2018. Rev Chil Enf Resp. 2018;34(3):171-88. doi: 10.4067/S0717-73482018000300171.

Gerke O. Reporting standards for Bland-Altman agreement analysis: A review of methodological reviews. Diagnostics. 2020;10(5):334. doi: 10.3390/diagnostics10050334.

Barone M, Losurdo G, Iannone A, et al. Assessment of body composition: Intrinsic methodological limitations and statistical pitfalls. Nutrition. 2022; 102:111736. doi:10.1016/j.nut.2022.11.1736.

Bujang MA, Baharum N. A simplified guide to determination of sample size requirements for estimating the value of intraclass correlation coefficient: a review. Arch Orofac Sci. 2017;12(1):1-11.

San Martin V. Evaluación de la aceptabilidad, reproductividad y calidad de las espirometrías realizadas en un servicio de neumología adultos. An Fac Cienc Méd (Asunción). 2018;51(1):29-36. doi: 10.18004/anales/2018.051(01)29-036.

Holt NR, Thompson BR, Miller B, et al. Substantial variation exists in spirometry interpretation practices for airflow obstruction in accredited lung function laboratories across Australia and New Zealand. Intern Med J. 2019;49(1):41-7. doi: 10.1111/imj.14047.

Berresheim H, Beine A, van Kampen V, et al. ATS/ ERS spirometry quality criteria in real life. Results of two occupational field studies. Respir Physiol Neurobiol. 2023;315:104094. doi: 10.1016/j.resp.2023.104094.

Das N, Verstraete K, Stanojevic S, et al. Deep-learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria. Eur Respir J. 2020;56(6):2000603. doi: 10.1183/13993003.00603-2020.

Wang Y, Li Y, Chen W, et al. Deep learning for spirometry quality assurance with spirometric indices and curves. Respir Res. 2022;23(1):98. doi: 10.1186/s12931-022-02014-9.

Langan RC, Goodbred AJ. Office Spirometry: Indications and Interpretation. Am Fam Physician. 2020;101(6):362-8.

Zhou J, Li X, Wang X, et al. Accuracy of portable spirometers in the diagnosis of chronic obstructive pulmonary disease A meta-analysis. NPJ Primary Care Respiratory Medicine. 2022;32:15. doi: 10.1038/s41533-022-00275-x.

Jiang F, Zeng YQ, Qian M, et al.Prevalence and quality of spirometry and the impact of spirometry training in Hunan, People's Republic of China. Zhonghua Yi Xue Za Zhi. 2019;99(18):1385-9. doi: 10.3760/cma.j.issn.0376-2491.2019.18.006.


Enlaces refback

  • No hay ningún enlace refback.