Resumen
Las mitocondrias desempeñan un papel importante en el metabolismo energético de la célula debido a la función principal de producción de energía biológicamente disponible en forma de adenosín trifosfato (ATP), mediante procesos bioquímicos como la fosforilación oxidativa, la beta oxidación de ácidos grasos y el ciclo de Krebs. El síndrome de dificultad respiratoria aguda es una enfermedad pulmonar grave caracterizada por la aparición de infiltrados alveolares difusos, respuesta inmunológica desregulada y lesión alveolocapilar que limita el intercambio de gases. Las células alveolares mantienen una tensión de oxígeno del 5% y las mitocondrias consumen oxígeno a través de la enzima citocromo c oxidasa en la cadena de transporte de electrones, lo que permite la producción de ATP. La reducción en el consumo de oxígeno es crucial en el daño mitocondrial, ya que las mitocondrias son sensibles a la hipoxemia, lo cual afecta la transferencia de moléculas en la cadena de transporte de electrones que alteran el ciclo de Krebs. La hipoxia por hipoxemia afecta la fusión y la fisión mitocondrial, mientras que la OXPHOS se remodela, principalmente en el complejo I, para mantener la integridad mitocondrial. La falta de oxígeno activa los factores inducibles por hipoxia, lo cual genera estrés oxidativo, acidosis y daño celular; por tal motivo, esta revisión tiene como objetivo describir las adaptaciones mitocondriales en el síndrome de dificultad respiratoria aguda.
Abstract
Mitochondria play an important role in cell energy metabolism due to the main function of producing biologically available energy in the form of adenosine triphosphate (ATP), through biochemical processes such as oxidative phosphorylation, beta oxidation of fatty acids and the Krebs cycle. Acute respiratory distress syndrome is a severe lung disease characterized by the appearance of diffuse alveolar infiltrates, dysregulated immune response and alveolocapillary injury that limits gas exchange. Alveolar cells maintain an oxygen tension of 5% and mitochondria consume oxygen through the cytochrome c oxidase enzyme in the electron transport chain, allowing ATP production. The reduction in oxygen consumption is crucial in mitochondrial damage, as mitochondria are sensitive to hypoxemia, affecting the transfer of molecules in the electron transport chain that disrupt the Krebs cycle. Hypoxia due to hypoxemia affects mitochondrial fusion and fission, while OXPHOS remodels, mainly in complex I, to maintain mitochondrial integrity. Lack of oxygen activates hypoxia-inducible factors, generating oxidative stress, acidosis and cell damage; therefore, this review aims to describe mitochondrial adaptations in acute respiratory distress syndrome.
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci. 2023;80(6):173. doi: 10.1007/s00018-023-04814-8.
Sharma A, Ahmad S, Ahmad T, et al. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 2021;284:119876. doi: 10.1016/j.lfs.2021.119876.
Kuzmanović J, Savić S, Bogdanović M, et al. Micromorphological features and interleukin 6, 8, and 18 expressions in post-mortem lung tissue in cases with acute respiratory distress syndrome. Forensic Sci Med Pathol. 2023. doi: 10.1007/s12024-022-00572-4.
Dong T, Chen X, Xu H, et al. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacol Ther. 2022;239:108208. doi: 10.1016/j.pharmthera.2022.108208.
Hu YK, Zhang H, Xiao B, et al. Mitochondrial Damage due to Hypoxia and Its Forensic Significance. Fa Yi Xue Za Zhi. 2020;36(2):243-8. doi: 10.12116/j.issn.1004-5619.2020.02.018.
Yıldırım F, Karaman İ, Kaya A. Current situation in ARDS in the light of recent studies: Classification, epidemiology and pharmacotherapeutics. Tuberk Toraks. 2021;69(4):535-46. doi: 10.5578/tt.20219611.
Payán H, Estela JL, Wilches E. Equations for calculating ideal body weight in patients on mechanical ventilation in adult intensive care units in Latin America: exploratory review. Rev Colomb Anestesiol. 2021;49(2):e401. doi: 10.5554/22562087.e949.
Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol. 2020;15:493-518. doi: 10.1146/annurev-pathmechdis-012419-032847.
Jiang Z, Zhang Z, Sun Q, et al. Dynamic evaluation of the pulmonary protective effects of prone position ventilation via respiratory mechanics for patients with moderate to severe acute respiratory distress syndrome. J Thorac Dis. 2022;14(8):2757-70. doi: 10.21037/jtd-22-291.
Swenson KE, Swenson ER. Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Crit Care Clin. 2021;37(4):749-76. doi: 10.1016/j.ccc.2021.05.003.
Andrieux P, Chevillard C, Cunha-Neto E, et al. Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci. 2021;22(21):11338. doi: 10.3390/ijms222111338.
Cogliati S, Cabrera-Alarcón JL, Enriquez JA. Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans. 2021;49(6):2655-68. doi: 10.1042/BST20210460.
Picca A, Calvani R, Coelho-Junior HJ, et al. Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells. 2021;10(3):537. doi: 10.3390/cells10030537.
Arias C, Sepúlveda P, Castillo RL, et al. Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells. Int J Mol Sci. 2023;24(4):3073. doi: 10.3390/ijms24043073.
Jaskiewicz L, Romaszko-Wojtowicz A, Doboszynska A, et al. The Role of Aquaporin 5 (AQP5) in Lung Adenocarcinoma: A Review Article. Cells. 2023;12(3):468. doi: 10.3390/cells12030468.
Zhao RZ, Jiang S, Zhang L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019;44(1):3-15. doi: 10.3892/ijmm.2019.4188
Huppert LA, Matthay MA, Ware LB. Pathogenesis of Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med. 2019;40(1):31-9. doi: 10.1055/s-0039-1683996.
Baechler BL, Bloemberg D, Quadrilatero J. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy. 2019;15(9):1606-19. doi: 10.1080/15548627.2019.1591672.
Pizzo P. Cell calcium: Mitochondria: function and disease. Cell Calcium. 2021;96:102370. doi: 10.1016/j.ceca.2021.102370.
Liu R, Xu C, Zhang W, et al. FUNDC1-mediated mitophagy and HIF1α activation drives pulmonary hypertension during hypoxia. Cell Death Dis. 2022;13(7):634. doi: 10.1038/s41419-022-05091-2.
Pan C, Liu L, Xie JF, et al. Acute Respiratory Distress Syndrome: Challenge for Diagnosis and Therapy. Chin Med J (Engl). 2018;131(10):1220-4. doi: 10.4103/0366-6999.228765.
Ebanks B, Katyal G, Taylor C, et al. Mitochondrial Haemoglobin Is Upregulated with Hypoxia in Skeletal Muscle and Has a Conserved Interaction with ATP Synthase and Inhibitory Factor 1. Cells. 2023;12(6):912. doi: 10.3390/cells12060912.
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85-100. doi: 10.1038/s41580-019-0173-8.
Infantino V, Santarsiero A, Convertini P, et al. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci. 2021;22(11):5703. doi: 10.3390/ijms22115703.
Li HS, Zhou YN, Li L, et al. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol. 2019; 25:101109. doi: 10.1016/j.redox.2019.101109.
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev. 2022;102(2):893-992. doi: 10.1152/physrev.00041.2020.
Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochim Biophys Acta Mol Cell Res. 2019;1866(7):1068-78. doi: 10.1016/j.bbamcr.2018.10.016.
Foo J, Bellot G, Pervaiz S, et al. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679-92. doi: 10.1016/j.tim.2021.12.011.
Pan S, Conaway S Jr, Deshpande DA. Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Arch Biochem Biophys. 2019;663:109-19. doi: 10.1016/j.abb.2019.01.002.
Young M, DiSilvio B, Rao S, et al. Mechanical Ventilation in ARDS. Crit Care Nurs Q. 2019;42(4):392-9. doi: 10.1097/CNQ.0000000000000279.
Wawrzeniak IC, Rios S, Almeida J. Weaning from Mechanical Ventilation in ARDS: Aspects to Think about for Better Understanding, Evaluation, and Management. Biomed Res Int. 2018; 2018:5423639. doi: 10.1155/2018/5423639.
Eyenga P, Roussel D, Rey B, et al. Mechanical ventilation preserves diaphragm mitochondrial function in a rat sepsis model. Intensive Care Med Exp. 2021;9(1):19. doi: 10.1186/s40635-021-00384-w.
Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 2017; 391:42-53. doi: 10.1016/j.tox.2017.07.019.
Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg. 2018;1859(9):940-50. doi: 10.1016/j.bbabio.201.
Caldeira DAF, Weiss DJ, Rocco PRM, et al. Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Front Immunol. 2021;12:782074. doi: 10.3389/fimmu.2021.782074.
Ten VS, Ratner V. Mitochondrial bioenergetics and pulmonary dysfunction: Current progress and future directions. Paediatr Respir Rev. 2020;34:37-45. doi: 10.1016/j.prrv.2019.04.001.
Long G, Gong R, Wang Q, et al. Role of released mitochondrial DNA in acute lung injury. Front Immunol. 2022;13:973089. doi: 10.3389/fimmu.2022.973089.