Resumen
Introducción: las intervenciones no farmacológicas (INF) o acciones preventivas (AP) contra enfermedades son la mejor alternativa para controlar futuras pandemias, en especial en poblaciones vulnerables, como las zonas semiurbanas.
Objetivo: describir los grupos predominantes de conductas de salud (GCS) y los factores asociados durante la tercera ola de la COVID-19 en una zona semiurbana.
Material y métodos: se aplicó una encuesta que incluyó las características, los factores relacionados con COVID-19, las percepciones de conductas de salud y las AP, en una muestra probabilística en un hospital de primer nivel del Estado de México. Se incluyeron personas de ambos sexos, mayores de 18 años. Mediante un análisis de conglomerados se caracterizaron los GCS con un análisis estadístico descriptivo y multivariado.
Resultados: en una muestra probabilistica (n = 260), se identificaron cuatro GCS: 2 de riesgo alto de contagio por la COVID-19 (GRA) y 2 de riesgo bajo (GRB) y las proporciones fueron 43.5% y 56.5%, respectivamente. Las características sociodemográficas de los grupos fueron similares. Para los GRB los factores significativos fueron las percepciones sobre la severidad y las barreras relacionadas con la COVID-19. En los GRA fue la seguridad baja y destacó la importancia de la comorbilidad como factor clínico.
Conclusiones: en una zona semiurbana se identificaron 2 conductas de salud de importancia: una de bajo riesgo y otra de alto riesgo. En el GRA, la percepción de seguridad baja fue especialmente relevante, lo cual resalta la importancia de las comorbilidades como factor clínico.
Abstract
Background: Non-pharmacological interventions (NFI) or preventive actions (PA) are the best alternatives to control future pandemics, especially in vulnerable populations, such as semi-urban areas.
Objective: To describe the predominant health behavior groups (HBG) and associated factors during the third wave of COVID-19 in a semi-urban area. Material and methods: A survey which included characteristics, factors related to COVID-19, perceptions of health behavior and PA was applied in a probabilistic sample in a first-level hospital in the State of Mexico. People of both sexes over 18 years of age were included. Using a hierarchical cluster analysis, HBGs were obtained and characterized with a descriptive and multivariate statistical analysis.
Results: In a probabilistic sample (n = 260), 4 HBGs were identified: 2 of high-risk (HRG) and 2 of low-risk (LRG), and the proportions were 43.5% y 56.5%, respectively. The sociodemographic characteristics of both groups were similar. Perceptions of severity and COVID-19-related barriers significantly influenced health behaviors in LRG. In HRG, low security played a significant role, highlighting the importance of comorbidities as a clinical factor.
Conclusions: In a semi-urban area, 2 crucial health behaviors were identified: one associated with low risk and the other with high risk. In the HRG, the perception of insecurity was particularly relevant, emphasizing the importance of comorbidities as a clinical factor.
Odusanya OO, Odugbemi BA, Odugbemi TO, et al. COVID-19: A review of the effectiveness of non-pharmacological interventions. Niger Postgrad Med J. 2020;27:261-267. doi: 10.4103/npmj.npmj_208_20.
Sánchez-Arenas R, Doubova SV, González-Pérez MA, et al. Factors associated with COVID-19 preventive health behaviors among the general public in Mexico City and the State of Mexico. PLoS One. 2021;16:e0254435. doi: 10.1371/journal.pone.0254435.
Shi HJ, Kim NY, Eom SA, et al. Effects of Non-Pharmacological Interventions on Respiratory Viruses Other Than SARS-CoV-2: Analysis of Laboratory Surveillance and Literature Review From 2018 to 2021. J Korean Med Sci. 2022;37:e172. doi: 10.3346/jkms.2022.37.e172.
Rosenstock IM, Strecher VJ, Becker MH. Social learning theory and the Health Belief Model. Health Educ Q. 1988;15:175-83. doi:10.1177/109019818801500203.
Costa MF. Health belief model for coronavirus infection risk determinants. Rev Saude Publica. 2020;54:47. doi: 10.11606/s1518-8787.2020054002494.
Moreno San Pedro E, Gil Roales-Nieto J. El Modelo de Creencias de Salud: Revisión Teórica, Consideración Crítica y Propuesta alternativa. I: Hacia un Análisis Funcional de las Creencias en Salud. Rev Int Psicol Ter Psicol. 2003;3(1):91-109. Disponible en: https://www.redalyc.org/ pdf/560/56030105.pdf.
Zewdie A, Mose A, Sahle T, et al. The health belief model's ability to predict COVID-19 preventive behavior: A systematic review. SAGE Open Med. 2022;10:20503121221113668. doi: 10.1177/20503121221113668.
World Health Organization. WHO Coronavirus (COVID-19) Dashboard [consultada el 23 de junio de 2023]. Disponible en: https://covid19.who.int/
Palacio-Mejía LS, Hernández-Ávila JE, et al. Leading causes of excess mortality in Mexico during the COVID-19 pandemic 2020-2021: A death certificates study in a middle-income country. Lancet Reg Health Am. 2022 Sep;13:100303. doi: 10.1016/j.lana.2022.100303.
Irigoyen-Camacho ME, Velazquez-Alva MC, Zepeda-Zepeda MA, et al. Effect of Income Level and Perception of Susceptibility and Severity of COVID-19 on Stay-at-Home Preventive Behavior in a Group of Older Adults in Mexico City. Int J Environ Res Public Health. 2020 Oct 12;17(20):7418. doi: 10.3390/ijerph17207418.
Coetzee BJ, Kagee A. Structural barriers to adhering to health behaviours in the context of the COVID-19 crisis: Considerations for low- and middle-income countries. Glob Public Health. 2020;15:1093-1102. doi: 10.1080/17441692.2020.1779331.
Wilson-VanVoorhis CR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor Quant Method Psychol. 2007; 3:43–50.doi: 10.20982 /tqmp.03.2.p043.
Bish A, Michie S. Demographic and attitudinal determinants of protective behaviours during a pandemic: a review. Br J Health Psychol. 2010;15:797-824. doi: 10.1348/135910710X485826.
Fujii R, Suzuki K, Niimi J. Public perceptions, individual characteristics, and preventive behaviors for COVID-19 in six countries: a cross-sectional study. Environ Health Prev Med. 2021;26:29. doi: 10.1186/s12199-021-00952-2.
Nishimi K, Borsari B, Marx BP, et al. Clusters of COVID-19 protective and risky behaviors and their associations with pandemic, socio-demographic, and mental health factors in the United States. Prev Med Rep. 2022;25:101671. doi: 10.1016/j.pmedr.2021.101671.
Endalew M, Belay DG, Tsega NT, et al. Limited handwashing facility and associated factors in sub-Saharan Africa: pooled prevalence and multilevel analysis of 29 sub-Saharan Africa countries from demographic health survey data. BMC Public Health. 2022;22:1969. doi: 10.1186/s12889-022-14390-4.
Ross I, Bick S, Ayieko P, et al. Effectiveness of handwashing with soap for preventing acute respiratory infections in low-income and middle-income countries: a systematic review and meta-analysis. Lancet. 2023;401:1681-1690. doi: 10.1016/S0140-6736(23)00021-1.
Lázaro J. Ixtlahuaca, municipio mexiquense con más muertos por COVID-19 [Internet]. Estado de México: La silla rota; 6 Mayo 2020 [Consultado 20 Jun 2023].Disponible en : https://lasillarota.com/metropoli/2020/5/6/ixtlahuaca-municipio-mexiquense-con-mas-muertos-por-covid-19-228208.html
Aguilar A. Estos son los 10 municipios mexiquenses con más casos activos al inicio de la tercera ola del Covid-19. El Sol de Toluca; 22/07/2021. Disponible en: https://www. elsoldetoluca.com.mx/local/estos-son-los-10-municipios-mexiquenses-con-mas-casos-activos-al-inicio-de-la-tercera-ola-del-covid-19-6995332.html.
Francis AI, Ghany S, Gilkes T, et al. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad Med J. 2022 May;98(1159):389-394. doi: 10.1136/postgradmedj-2021-140654.
Frutos-Cortés M. El impacto de COVID-19 en la salud mental de los jóvenes universitarios. Ciudad de México: Instituto Nacional de Administración Pública; mayo-agosto de 2020. Disponible en: https://inap.mx/wp-content/uploads/2020/12/rap152.pdf.
Alagili DE, Bamashmous M. The Health Belief Model as an explanatory framework for COVID-19 prevention practices. J Infect Public Health. 2021;14:1398-403. doi: 10.1016/j.jiph.2021.08.024.
García-Dolores F, Tendilla-Beltrán H, Flores F, et al. Increased suicide rates in Mexico City during the COVID-19 pandemic outbreak: An analysis spanning from 2016 to 2021. Heliyon. 2023;9(6):e16420. doi: 10.1016/j.heliyon.2023.e16420.
Almeida M, Shrestha AD, Stojanac D, et al. The impact of the COVID-19 pandemic on women's mental health. Arch Womens Ment Health. 2020;23(6):741-748. doi: 10.1007/s00737-020-01092-2.
Matthews TA, Chen L, Omidakhsh N, et al. Gender difference in working from home and psychological distress - A national survey of U.S. employees during the COVID-19 pandemic. Ind Health. 2022;60:334-344. doi: 10.2486/indhealth.2022-0077.
Comisión Económica para América Latina y el Caribe. Mortalidad por COVID-19 y las desigualdades por nivel socioeconómico y por territorio. CEPAL; 22 de noviembre de 2021. Disponible en: https://www.cepal.org/es/enfoques/mortalidad-covid-19-desigualdades-nivel-socioeconomico-territorio.
Weston D, Ip A, Amlôt R. Examining the application of behaviour change theories in the context of infectious disease outbreaks and emergency response: a review of reviews. BMC Public Health. 2020;20:1483. doi: 10.1186/s12889-020-09519-2.