ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Covid-19 y diabetes mellitus tipo 2: implicaciones en las células beta pancreáticas / COVID-19 and type 2 diabetes mellitus: implications in pancreatic beta cells

Ivonne Grisel Sánchez-Cervantes, Ignacio González-Sánchez, Irma Elena López-Martínez, Elsa Liliana Aguirre-Benítez, Cristina Coronel-Cruz

Resumen


Resumen

México presenta una alta prevalencia de enfermedades crónico-metabólicas, destacando de entre estas la diabetes mellitus tipo 2 (DMT2). Es esencial profundizar en la asociación entre la covid-19 y la DMT2, dado que ambas enfermedades tienen efectos bidireccionales. La diabetes puede incrementar la patogenicidad del virus SARS-CoV-2, debido a las alteraciones metabólicas que subyacen a esta enfermedad, lo que resulta en un aumento de la susceptibilidad y la severidad de la covid-19 entre los pacientes diabéticos, siendo una población de alto riesgo de mortalidad. Por otra parte, la infección por SARS-CoV-2 puede predisponer a los individuos a hiperglucemia o diabetes de nueva aparición. Con el propósito de comprender la asociación que existe entre la covid-19 y la DMT2, en esta revisión se enfatiza el tropismo del virus SARS-CoV-2 por las células beta pancreáticas secretoras de insulina, así como el efecto que tiene el virus sobre la fisiología de estas células.

 

Abstract

The prevalence of chronic metabolic diseases in Mexico is high, being type 2 Diabetes mellitus (T2DM) as the most common disease. Several studies have shown that, compared with healthy individuals, patients with T2DM suffer a higher severity and mortality of Coronavirus disease 2019 (COVID-19). Therefore, it is important to the knowledge of the bidirectional relationship between these diseases. T2DM can increase SARS-CoV-2 virus pathogenicity in part due to metabolic disturbance. As a result, COVID-19 susceptibility and severity rise in diabetic individuals, which makes them a high-risk population. On the other hand, the infection caused by SARS-CoV-2 can lead individuals to hyperglycemia or new-onset diabetes. In order to understand the relationship between COVID-19 and T2DM, this review aims to emphasize the tropism of the SARS-CoV-2 virus to pancreatic beta-cells, as well as the physiologic effects of these.


Palabras clave


Diabetes Mellitus Tipo 2; Células Secretoras de Insulina; COVID-19; SARS-CoV-2 / Diabetes Mellitus, Type 2; Insulin-Secreting Cells; COVID-19; SARS-CoV-2

Texto completo:

PDF

Referencias


 

Tabacof L, Tosto-Mancuso J, Wood J, et al. Post-acute COVID-19 Syndrome Negatively Impacts Physical Function, Cognitive Function, Health-Related Quality of Life, and Participation. Am J Phys Med Rehabil. 2022;101(1):48-52. doi: 10.1097/PHM.0000000000001910.

Li J, He X, Yuan Y, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Infect Control. 2021;49(1):82-9. doi: 10.1016/j.ajic.2020.06.008.

Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813-22. doi: 10.1016/S2213-8587(20)30272-2.

Steenblock C, Hassanein M, Khan EG, et al. Diabetes and COVID-19: Short- and Long-Term Consequences. Horm Metab Res. 2022;54(8):503-9. doi: 10.1055/a-1878-9566.

Denova-Gutierrez E, Lopez-Gatell H, Alomia-Zegarra JL, et al. The Association of Obesity, Type 2 Diabetes, and Hypertension with Severe Coronavirus Disease 2019 on Admission Among Mexican Patients. Obesity (Silver Spring). 2020;28(10):1826-32. doi: 10.1002/oby.22946.

Jedrzejak AP, Urbaniak EK, Wasko JA, et al. Diabetes and SARS-CoV-2-Is There a Mutual Connection? Front Cell Dev Biol. 2022;10:913305. doi: 10.3389/fcell.2022.913305.

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80. doi: 10.1016/j.cell.2020.02.052.

V'Kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-70. doi: 10.1038/s41579-020-00468-6.

Mu J, Fang Y, Yang Q, et al. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discov. 2020;6:65. doi: 10.1038/s41421-020-00208-3.

Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf). 2021;233(4):e13733. doi: 10.1111/apha.13733.

Fignani D, Licata G, Brusco N, et al. SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic beta-Cells and in the Human Pancreas Microvasculature. Front Endocrinol (Lausanne). 2020;11:596898. doi: 10.3389/fendo.2020.596898.

Liu F, Long X, Zhang B, et al. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020;18(9):2128-30. doi: 10.1016/j.cgh.2020.04.040.

Coate KC, Cha J, Shrestha S, et al. SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in beta Cells. Cell Metab. 2020;32(6):1028-40. doi: 10.1016/j.cmet.2020.11.006.

Hikmet F, Mear L, Edvinsson A, et al. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610. doi: 10.15252/msb.20209610.

Geravandi S, Mahmoudi-Aznaveh A, Azizi Z, et al. SARS-CoV-2 and pancreas: a potential pathological interaction? Trends Endocrinol Metab. 2021;32(11):842-5. doi: 10.1016/j.tem.2021.07.004.

Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic beta cells and elicits beta cell impairment. Cell Metab. 2021;33(8):1565-76 e5. doi: 10.1016/j.cmet.2021.05.013.

Hayden MR. An Immediate and Long-Term Complication of COVID-19 May Be Type 2 Diabetes Mellitus: The Central Role of beta-Cell Dysfunction, Apoptosis and Exploration of Possible Mechanisms. Cells. 2020;9(11). doi: 10.3390/cells9112475.

Hernandez-Ochoa B, Ortega-Cuellar D, Gonzalez-Valdez A, et al. COVID-19 in G6PD-deficient Patients, Oxidative Stress, and Neuropathology. Curr Top Med Chem. 2022;22(16):1307-25. doi: 10.2174/1568026622666220516111122.

Olagnier D, Farahani E, Thyrsted J, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020;11(1):4938. doi: 10.1038/s41467-020-18764-3.

Geca T, Wojtowicz K, Guzik P, et al. Increased Risk of COVID-19 in Patients with Diabetes Mellitus-Current Challenges in Pathophysiology, Treatment and Prevention. Int J Environ Res Public Health. 2022;19(11). doi: 10.3390/ijerph19116555.

Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev. 2021;34(3). doi: 10.1128/CMR.00299-20.

Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9. doi: 10.1172/JCI137244.

Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X.

Tan M, Liu Y, Zhou R, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology. 2020;160(3):261-8. doi: 10.1111/imm.13223.

Shao S, Yang Q, Pan R, et al. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne). 2021;12:731974. doi: 10.3389/fendo.2021.731974.

Sen S, Chakraborty R, Kalita P, et al. Diabetes mellitus and COVID-19: Understanding the association in light of current evidence. World J Clin Cases. 2021;9(28):8327-39. doi: 10.12998/wjcc.v9.i28.8327.

Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 2020;27(1):125-36 e7. doi: 10.1016/j.stem.2020.06.015.

Muller JA, Gross R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149-65. doi: 10.1038/s42255-021-00347-1.

Tang X, Uhl S, Zhang T, et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021;33(8):1577-91 e7. doi: 10.1016/j.cmet.2021.05.015.

Kim SH, Arora I, Hsia DS, et al. New-Onset Diabetes after COVID-19. J Clin Endocrinol Metab. 2023. doi: 10.1210/clinem/dgad284.

Montefusco L, Ben Nasr M, D'Addio F, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;3(6):774-85. doi: 10.1038/s42255-021-00407-6.

Pal R, Banerjee M, Yadav U, et al. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: A systematic review of literature. Diabetes Metab Syndr. 2020;14(6):1563-9. doi: 10.1016/j.dsx.2020.08.015.

Zhu Z, Mao Y, Chen G. Predictive value of HbA1c for in-hospital adverse prognosis in COVID-19: A systematic review and meta-analysis. Prim Care Diabetes. 2021;15(6):910-7. doi: 10.1016/j.pcd.2021.07.013.

Zhu L, She ZG, Cheng X, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31(6):1068-77 e3. doi: 10.1016/j.cmet.2020.04.021.

Gangadharan C, Ahluwalia R, Sigamani A. Diabetes and COVID-19: Role of insulin resistance as a risk factor for COVID-19 severity. World J Diabetes. 2021;12(9):1550-62. doi: 10.4239/wjd.v12.i9.1550.




DOI: https://doi.org/10.24875/zenodo.10712093

DOI (PDF): https://doi.org/10.24875/10.5281/zenodo.10712093

Enlaces refback

  • No hay ningún enlace refback.