Resumen
Introducción: los errores en la fase preanalítica del laboratorio de microbiología merman la seguridad del paciente y generan gastos adicionales. En México no contamos con sistemas para evaluación y monitoreo de la fase preanalítica, se proponen indicadores de calidad para mejora continua.
Objetivo: identificar los principales motivos de rechazo de muestras respiratorias en el laboratorio de microbiología y evaluar la utilidad de indicadores de calidad preanalítica.
Material y métodos: estudio transversal. Revisión de solicitudes del laboratorio de microbiología de agosto 2022 a julio 2023, calculó la frecuencia de rechazo e identificación de los principales motivos del mismo, se analizó por medio de indicadores de calidad basados en la Federación Internacional de Química Clínica y Medicina de Laboratorio (IFCC).
Resultados: de 3530 solicitudes de procesamiento, 582 eran de muestras respiratorias (16.48%), 44 muestras rechazadas por errores preanalíticos (7.56%), las principales causas identificadas: error de transcripción 22.7%, error de identificación 20.4%, muestras que no cumplen criterios de Murray-Washington 25.0%, errores en la obtención/recogida de muestra 20.4%, muestras con defectos en la conservación 4.5% y muestras sin identificar: 6.8%.
Conclusiones: se identificaron las principales causas de rechazo, al análisis con los indicadores de calidad preanalítica se encontraron en niveles deseables y en rangos de referencia, solo 4 fueron útiles para implementar a largo plazo.
Abstract
Background: Errors in the pre-analytical phase of the microbiology laboratory reduce patient safety and generate additional expenses. In Mexico we do not have systems for evaluation and monitoring of the pre-analytical phase; quality indicators are proposed for continuous improvement.
Objective: Identify the main reasons for rejection of respiratory samples in the microbiology laboratory and evaluate the usefulness of preanalytical quality indicators.
Material and methods: Cross-sectional study. Review of microbiology laboratory applications from August 2022 to July 2023, calculated the frequency of rejection and identification of the main reasons for it, it was analyzed using quality indicators based on the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC).
Results: Of 3530 processing requests, 582 were for respiratory samples (16.48%), 44 samples rejected due to pre-analytical errors (7.56%), the main causes identified: Transcription error 22.7%, identification error 20.4%, Samples that do not comply Murray-Washington criteria 25.0%, Errors in obtaining/collecting samples 20.4%, Samples with defects in conservation 4.5%, Unidentified samples: 6.8%.
Conclusions: The main causes of rejection were identified; upon analysis with the preanalytical quality indicators, they were found at desirable levels and in reference ranges; only 4 were useful for long-term implementation.
Apunte-Osorio A, Francisco-Pérez J. Quality in the preanalytic management of a clinical laboratory of derivation of biological samples. Agora Heterodoxias. 2017;3(2):68-88.
Marzana-Sanz I, Ibarz-Escuer M, Llopis-Diaz MA, et al. Recomendaciones para el diseño e implementación de un programa de aseguramiento de la calidad de la fase preanalítica. Rev Lab Clin. 2019;12(4):e54-65. doi: 10.1016/j.labcli.2019.01.0031888.
Sciacovelli L, Lippi G, Sumarac Z, et al. Pre-analytical quality indicators in laboratory medicine: Performance of laboratories participating in the IFCC working group “Laboratory Errors and Patient Safety” project. 2019;497:35-40. doi: 10.1016/j.cca.2019.07.007.
Das-Chugh T, Kummar-Duggal A, Dewan-Duggal S. Patient Safety, Clinical Microbiology, and Collaborative Healthcare. Ann Natl Acad Med Sci. 2022;58(03):128-35. doi: 10.1055/s-0042-1744390.
Secretaria de Salud. Programa de Acción Específico Prevención y Control de las Enfermedades Respiratorias e Influenza 2013-2018 [Internet]. México: Secretaría de Salud; 2023. Disponible en: https://www.gob.mx/salud/documentos/programa-de-accion-especifico-prevencion-y-control-de-las-enfermedades-respiratorias-e-influenza-2013-2018.
Akalın BetülSB. Analysis on the Errors in the Pre-analytical Process in a Clinical Microbiology Laboratory. IJBCS. 2019;8(1):37-45. Disponible en: https://www.researchgate.net/publication/341991333.
Mehndiratta M, Pasha EH, Chandra N, et al. Quality Indicators for Evaluating Errors in the Preanalytical Phase. J Lab Physicians. 2021;13(02):169-74. doi: 10.1055/s-0041-1729473.
Plebani M, Sciacovelli L, Aita A. Quality Indicators for the Total Testing Process. Clin Lab Med. 2017;37(1):187-205. doi: 10.1016/j.cll.2016.09.015.
Ćelap I, Vukasović I, Juričić G, et al. Minimum requirements for the estimation of measurement uncertainty: Recommendations of the joint working group for uncertainty of measurement of the CSMBLM and CCMB. Biochem Med (Zagreb). 2017 Oct 15;27(3):030502. doi: 10.11613/BM.2017.030502.
Khumalo S, Makgatho S. Analysis of reasons for rejection of biological specimens at national health laboratory service - Dr George Mukhari Tertiary Laboratory. Popul Med. 2023;5:A656. doi: 10.18332/popmed/164852.
Korhan-Sığ A, Özen N, Çetin Duran A, et al. Quality Data and Errors in a Tertiary Microbiology Laboratory (2017-2020): “The Good, the Bad and the Ugly.” Hamidiye Med J. 2023;4(2):128-35. doi: 10.4274/hamidiyemedj.galenos.2023.88700.
Jnah A, Yagoubi M, Seffar M, et al. Maîtrise des non-conformités de la phase pré-analytique au Laboratoire de Bactériologie du CHU Ibn Sina à Rabat (Maroc) Control of non-conformities in the pre-analytical phase at the Bacteriology Laboratory of the Ibn Sina University Hospital in Rabat (Morocco). Tunis Med. 2022;100(3):247-54.
Cadamuro J, Lippi G, Von-Meyer A, et al. European survey on preanalytical sample handling - Part 1: How do european laboratories monitor the preanalytical phase? on behalf of the european federation of clinical chemistry and laboratory medicine (EFLM) working group for the preanalytical phase (WG-PRE). Biochem Med (Zagreb). 2019;29(2):322-33. doi: 10.11613/BM.2019.020704.
Budayanti NS, Suryawan K, Iswari IS, et al. The Quality of Sputum Specimens as a Predictor of Isolated Bacteria From Patients With Lower Respiratory Tract Infections at a Tertiary Referral Hospital, Denpasar, Bali-Indonesia. Front Med (Lausanne). 2019;6:64. doi: 10.3389/fmed.2019.00064.
Mosha VV, Kabanyana C. The rate of sample rejection and pre-analytical errors at KCMC Clinical Laboratory in Moshi, Kilimanjaro. EAHRC. 2021;3(1):118-24. Disponible en: https://www.ajol.info/index.php/easci/article/view/235404.
Sciacovelli L, Panteghini M, Lippi G, et al. Defining a roadmap for harmonizing quality indicators in Laboratory Medicine: a consensus statement on behalf of the IFCC Working Group “Laboratory Error and Patient Safety” and EFLM Task and Finish Group “Performance specifications for the extra-analytical phases”. Clin Chem Lab Med 2017;55(10):1478-88. doi: 10.1515/cclm-2017-0412.
Asitava-Deb Roy, Das D. An evaluation of the errors occurring in pathology and microbiology laboratories of a tertiary care teaching hospital and their root cause analyses. J Healt Res Rev Dev Ctries. 2019;6(3):102-6. doi: 10.4103/jhrr.jhrr_38_19.
Quiroz-Arias C. Errores preanalíticos en el laboratorio clínico de un hospital de tercer nivel: prueba piloto. Salud Barranquilla. 2010;26(2):189-200.
Kang F, Li W, Xia X, et al. Three years’ experience of quality monitoring program on pre-analytical errors in china. J Clin Lab Anal. 2021;35(3):e23699. doi: 10.1002/jcla.23699.
Caballero A, Gómez-Rioja R, Ventura M, et al. Evaluación de 18 indicadores de calidad del Programa de Garantía Externa de la Calidad de Preanalítica de la Sociedad Espanola de Medicina de Laboratorio (SEQCML). Adv Lab Med. 2022;3(2):188-200. doi: 10.1515/almed-2022-0036.
Keski̇n A, Aci R, Arslanbek-Erdem M, et al. Evaluation of Rejection Rates and Reasons among Specimens Taken from Different Hospital Units. Med Lab J. 2021;15(6):38-43. doi: 10.29252/mlj.15.6.38.
Moreno-López AB, López-Picazo Ferrer JJ, Blázquez-Álvarez JM, et al. Diseño de un conjunto de indicadores sobre recomendaciones de «No Hacer». J Healthc Qual Res. 2020;35(4):217-24. doi: 10.1016/j.jhqr.2019.11.005.