ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Detección de radiación ionizante en quirófano y áreas hospitalarias / Detection of ionizing radiation in operating room and hospital areas

Alan Antonio Covarrubias-Rodríguez, Cosette Durán-Castillo, Manuel Ivan León-Madrid, Janet Alejandra Elías-Ángel, Martha Alicia Hernández-Gonzalez, Rafael Ángel Bonilla-Salcedo, Modesto Antonio Sosa-Aquino, Miguel Ángel Vallejo Hernández

Resumen


Resumen

Introducción: la implementación de nuevas técnicas y tecnologías médicas ha producido un incremento en la exposición ocupacional a radiación ionizante y, consecuentemente, en el desarrollo de neoplasias y efectos adversos en la salud del personal sanitario.

Objetivo: obtener información real sobre la dosis absorbida por el personal sanitario expuesto a radiación ionizante en el quirófano.

Material y métodos: se utilizaron dosímetros TLD 100, para realizar las mediciones de las dosis absorbidas, esto por medio de curvas de brillo. Se monitorearon 42 intervenciones quirúrgicas en diferentes especialidades, en cada intervención se utilizaron mínimo cuatro dosímetros, con el objetivo de analizar la dosis en función del rol de participación del individuo dentro del quirófano.

Resultados: se creó una base de datos con las 42 cirugías monitoreadas, por cada una se obtuvieron mínimo cuatro datos analizados (uno por cada integrante del equipo quirúrgico, es decir, uno por cada portador de dosímetro). La mayor dosis absorbida fue para la especialidad de Traumatología, seguida de Otorrinolaringología, Neurocirugía y, finalmente, Oftalmología.

Conclusiones: se logró emplear un sistema de monitoreo adecuado para medir la dosis de radiación ionizante absorbida durante diferentes procedimientos quirúrgicos. Con base en los resultados, se recomienda un seguimiento constante en el monitoreo de la dosimetría del personal de la especialidad de Traumatología.

 

Abstract

Background: The implementation of new medical techniques and technologies has increased occupational exposure to ionizing radiation and consequently the development of neoplasia and adverse effects on health personnel.

Objective: Have real information on the absorbed dose by healthcare personnel exposed to ionizing radiation in an operating room.

Material and methods: TLD 100 dosimeters were used to measure absorbed doses by brightness curves. 42 surgical interventions in different specialties were monitored, in each intervention a minimum of 4 dosimeters were used, with the objective of analyzing the dose based on the participation role of the individual within the operating room.

Results: A database was created with the 42 monitored surgeries, for each one a minimum of 4 analyzed data were obtained (one for each participant in the surgical procedure, that is, one for each dosimeter). The highest absorbed dose was for the specialty of traumatology, followed by otorhinolaryngology, neurosurgery and finally ophthalmology.

Conclusions: It was possible to use an adequate monitoring system to measure the dose of absorbed ionizing radiation during different surgical procedures. Based on the results, constant dosimetry follow-up monitoring of trauma specialty personnel is recommended.


Palabras clave


Radiación Ionizante; Dosímetros de Radiación; Traumatología; Quirófanos / Radiation, Ionizing; Radiation Dosimeters; Traumatology; Operating Rooms

Texto completo:

PDF

Referencias


Baudin C, Vacquier B, Thin G, et al. Occupational exposure to ionizing radiation in medical staff: trends during the 2009-2019 period in a multicentric study. Eur Radiol. 2023 Aug;33(8):5675-5684. doi: 10.1007/s00330-023-09541-z.

Chartier H, Fassier P, Leuraud K, et al. Occupational low-dose irradiation and cancer risk among medical radiation workers. Occup Med (Lond). 2020 Oct 27;70(7):476-484. doi: 10.1093/ occmed/kqaa130.

Adliene D, Griciene B, Skovorodko K, et al. Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers. Environ Res. 2020;183:109144. doi: 10.1016/j.envres.2020.109144.

Mavragani IV, Nikitaki Z, Kalospyros SA, et al. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel). 2019;11(11):1789. doi: 10.3390/cancers11111789.

Ahmad IM, Abdalla MY, Moore TA, et. al. Healthcare Workers Occupationally Exposed to Ionizing Radiation Exhibit Altered Levels of Inflammatory Cytokines and Redox Parameters. Antioxidants (Basel). 2019;8(1):12. doi: 10.3390/antiox8010012.

Bolbol SA, Zaitoun MF, Abou El-Magd SA, et al. Healthcare Workers Exposure to Ionizing Radiation: Oxidative Stress and Antioxidant Response. Indian J Occup Environ Med. 2021;25 (2):72-77. doi: 10.4103/ijoem.IJOEM_198_20.

Hurley RJ, McCabe FJ, Turley L, et. al. Whole-body radiation exposure in Trauma and Orthopaedic surgery. Bone Jt Open. 2022;3(11):907-912. doi: 10.1302/2633-1462.311.BJO-2022- 0062.R1.

König AM, Etzel R, Thomas RP, et al. Personal Radiation Protection and Corresponding Dosimetry in Interventional Radiology: An Overview and Future Developments. Rofo. 2019;191 (6):512-521. doi: 10.1055/a-0800-0113.

Sierra LAM, Katsnelson JY, Pineda DM, et. al. Occupational Radiation Exposure Among General Surgery Residents: Should We Be Concerned? J Surg Educ. 2022;79(2):463-468. doi: 10.1016/j.jsurg.2021.10.016.

Hadid-Beurrier L, Dabli D, Royer B, et. al. Diagnostic reference levels during fluoroscopically guided interventions using mobile C-arms in operating rooms: A national multicentric survey. Phys Med. 2021;86:91-97. doi: 10.1016/j.ejmp.2021.05.013.

Bratschitsch G, Leitner L, Stücklschweiger G, et al. Radiation Exposure of Patient and Operating Room Personnel by Fluoroscopy and Navigation during Spinal Surgery. Sci Rep. 2019; 9(1). doi: 10.1038/s41598-019-53472-z.

Ramoutar DN, Thakur Y, Batta V, et al. Orthopedic Surgeon Brain Radiation During Fluoroscopy: A Cadaver Model. J Bone Joint Surg Am. 2020;102(22):e125. doi: 10.2106/JBJS.19.01053.

Hein S, Wilhelm K, Miernik A, et al. Radiation exposure during retrograde intrarenal surgery (RIRS): a prospective multicenter evaluation. World J Urol. 2021;39(1):217-224. doi: 10.1007/ s00345-020-03160-9.

Henderickx MMEL, Baard J, Beerlage HP, et al. Fluoroscopy use during ureterorenoscopy: are urologists concerned about radiation exposure? A nationwide survey in Belgium and The Netherlands. Acta Chir Belg. 2021;121(3):170-177. doi: 10.1080/ 00015458.2019.

U.S. Food and Drug Administration. Fluoroscopy. 2020; [Actualizado 21 Feb 2023; citado 26 Sept 2023] Disponible en: https://www.fda.gov/radiation-emitting-products/medical -x-ray-imaging/fluoroscopy.

Godzik J, Mastorakos GM, Nayar G, et al. Surgeon and staff radiation exposure in minimally invasive spinal surgery: prospective series using a personal dosimeter. J Neurosurg Spine. 2020;1-7. doi: 10.3171/2019.11.

Chida K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol. 2022;15(2):101-115. doi: 10.1007/s12194-022-00660-8.

Keenen TL, Demirel S, Gheen A, et al. Intraoperative Fluoroscopy Radiation Using OEC 9900 Elite C-arm: Risk and Method for Decreasing Exposure. Health Phys. 2023;124(5): 380-390. doi: 10.1097/HP.0000000000001679.

Robatjazi M, Dareyni A, Baghani HR, et al. Investigation of radiation dose around C-arm fluoroscopy and relevant cancer risk to operating room staff. Radiat Environ Biophys. 2022;61 (2):301-307. doi: 10.1007/s00411-022-00965-7.

Weyland CS, Hemmerich F, Möhlenbruch MA, et al. Radiation exposure and fluoroscopy time in mechanical thrombectomy of anterior circulation ischemic stroke depending on the interventionalist’s experience-a retrospective single center experience. Eur Radiol. 2020;30(3):1564-1570. doi: 10.1007/ s00330-019-06482-4.

Malik AT, Rai HH, Lakdawala RH, et al. Does surgeon experience influence the amount of radiation exposure during orthopedic procedures? A systematic review. Orthop Rev (Pavia). 2019;11(1):7667. doi: 10.4081/or.2019.7667.

Aubert B, Biau A., Derreumaux S, et al. ICRP Publication 105. Radiological Protection in Medicine. Elsevier Ltd.; Oxford, UK: 2011.

NORMA Oficial Mexicana NOM-229-SSA1-2002, Salud ambiental. Requisitos técnicos para las instalaciones, responsabilidades sanitarias, especificaciones técnicas para los equipos y protección radiológica en establecimientos de diagnóstico médico con rayos X. Diario Oficial de la Federación; 2006.

Bos AJJ. Theory of thermoluminescence. Radiat Meas. 2006; 41: S45-56. doi: 10.1016/j.radmeas.2007.01.003.

Furetta C, Weng PS. Operational Thermoluminescence Dosimetry. World Scientific, editor; 1998.

Thiyagarajan S, Vallejo MA, Kumar S, et al. Thermoluminescence from Cu Doped Lithium Tetraborate Irradiated with X-ray and γ Using 137Cs Radioactive Source. J Nanosci Nanotechnol. 2018 Oct 1;18(10):6919-6927. doi: 10.1166/jnn.2018.15532. PMID: 29954511.

Loaiza SP., & Álvarez Romero, J. T. Calibración de polvo TLD-100 para energías de 60Co, 137Cs, 192Ir y RX de 250, 50 k Vp en dosis absorbida en agua con fines de control de calidad dosimétrico para braquiterapia de alta tasa de dosis. Rev Mex Fis 2006 52(5), 413-421.

Muñoz AA, Sosa MA, Azorín JC, et. al. Determinación de dosis absorbida en cristalino y glándula tiroides con protocolos de irradiación aplicados en equipos de ortopantomografía para panorámica dental [Internet]. 2017 [citado 2023 Sep 26]. Disponible en https://repositorio.itm.edu.co/handle/20.500.12622/519.




DOI: https://doi.org/10.24875/10.5281/zenodo.11396957

Enlaces refback

  • No hay ningún enlace refback.