Resumen
Introducción: la letalidad de la COVID-19 mostró grandes variaciones durante el primer año de la pandemia y dichas discrepancias parecen indicar diferentes niveles de riesgo de muerte entre poblaciones. En muy pocos estudios se logró estratificar la letalidad por la presencia o ausencia de factores de riesgo.
Objetivo: identificar las tasas de letalidad de COVID-19 condicionadas por factores de riesgo.
Material y métodos: análisis secundario de una base de datos abiertos de la Secretaría de Salud de México, con pacientes estudiados del 1 de enero de 2020 al 6 de enero de 2021. Se incluyeron pacientes con prueba positiva de COVID-19; se excluyeron aquellos con 5 o más factores de riesgo y combinaciones de factores poco frecuentes. La muestra final estuvo conformada por 394,537 pacientes. Se segmentó la base de datos en grupos de 0, 1, 2, 3 y 4 factores de riesgo. Se estimó la tasa de letalidad condicionada por factores de riesgo (83 combinaciones).
Resultados: en los pacientes con 0 factores la tasa de letalidad fue de 2.1%. En aquellos con solamente la edad ≥ 50 años fue de 20.2%. La combinación de factores con la mayor letalidad fue edad ≥ 50 años + diabetes + obesidad (57.1%).
Conclusiones: las tasas de letalidad de COVID-19 condicionadas por factores de riesgo variaron de 1.7% hasta 57.1%, según la ausencia o presencia de ciertas comorbilidades. Estudios como este son necesarios para abordar con mayor precisión el riesgo de muerte entre subpoblaciones expuestas a diferentes factores de riesgo.
Abstract
Background: The COVID-19 fatality rate exhibited significant variations during the first year of the pandemic, and such divergences seem to show different levels of risk of death among populations. Very few studies stratified fatality based on the presence or absence of risk factors.
Objective: To identify COVID-19 fatality rates conditioned by risk factors.
Material and methods: Secondary analysis using an open health database from the Secretariat of Health of Mexico (Secretaría de Salud), covering patients studied from January 1, 2020, to January 6, 2021. Patients with confirmed COVID-19 result were included; those with 5 risk factors or more, or with rare combinations of factors were excluded. The final sample consisted of 394,537 patients. The database was segmented into groups based on 0, 1, 2, 3, and 4 risk factors. The fatality rate conditioned by risk factors was estimated (83 combinations).
Results: Among patients with 0 risk factors, the fatality rate was 2.1%. In those aged ≥ 50 years alone or more, the fatality rate was 20.2%. The combination of factors with the highest fatality rate was age ≥ 50 years + diabetes + obesity (57.1%).
Conclusions: COVID-19 fatality rates conditioned by risk factors ranged from 1.7% to 57.1%, according to the presence or absence of specific comorbidities. Studies like this are necessary to address more precisely the risk of death among subpopulations exposed to different risk factors.
Mathieu E, Ritchie H, Rodés-Guirao L, et al. Mortality Risk of COVID-19. Our World Data Coronavirus; 2020. Disponible en: https://ourworldindata.org/mortality-risk-covid.
Moreno-Altamirano A, López-Moreno S, Corcho-Berdugo A. Principales medidas en epidemiología. Salud Publica Mex. 2000;42:337-48.
Moreno-Altamirano A, García-García JJ, Palacios-Nava ME. Epidemiometría: medición de la frecuencia, la fuerza de asociación y el impacto potencial. En: Villa-Romero A, Moreno-Altamirano L, García-de la Torre GS, editores. Epidemiología y estadística en salud pública. Ciudad de México: McGraw-Hill; 2012, pp. 43-61.
Jia N, Feng D, Fang L, et al. Case fatality of SARS in mainland China and associated risk factors. Trop Med Int Heal. 2009;14:21-7. doi: 10.1111/j.1365-3156.2008.02147.x.
Shu PY, Wei HY, Hung MN. Characteristics and risk factors for fatality in patients with dengue hemorrhagic fever, Taiwan, 2014. Am J Trop Med Hyg. 2016;95:322-7. doi: 10.4269/ajtmh.15-0905.
Zhou C, Wheelock ÅM, Zhang C, et al. The role of booster vaccination in decreasing COVID-19 age-adjusted case fatality rate: Evidence from 32 countries. Front Public Heal. 2023;11. doi: 10.3389/fpubh.2023.1150095.
Khoury MJ, Iademarco MF, Riley WT. Precision public health for the era of precision medicine. Am J Prev Med. 2016;50:398-401. doi: 10.1016/j.amepre.2015.08.031.
Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146:110-8. doi: 10.1016/j.jaci.2020.04.006.
Xu PP, Tian RH, Luo S, et al. Risk factors for adverse clinical outcomes with COVID-19 in China: a multicenter, retrospective, observational study. Theranostics. 2020;10:6372-83. doi: 10.7150/thno.46833.
Hernández-Galdamez DR, González-Block MA, Romo-Dueñas DK, et al. Increased risk of hospitalization and death in patients with COVID-19 and pre-existing noncommunicable diseases and modifiable risk factors in Mexico. Arch Med Res. 2020;51:683-9. doi: 10.1016/j.arcmed.2020.07.003.
Liu D, Cui P, Zeng S, et al. Risk factors for developing into critical COVID-19 patients in Wuhan, China: A multicenter, retrospective, cohort study. EClinicalMedicine. 2020;25:100471. Disponible en: doi: 10.1016/j.eclinm.2020.100471.
Wu R, Ai S, Cai J, et al. Predictive model and risk factors for case fatality of COVID-19: A cohort of 21,392 cases in Hubei, China. Innov. 2020;1:100022. doi: 10.1016/j.xinn.2020.100022.
Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-6. doi: 10.1038/s41586-020-2521-4.
Cordero-Franco HF, De La Garza-Salinas LH, Gomez-Garcia S, et al. Risk factors for SARS-CoV-2 infection, pneumonia, intubation, and death in Northeast Mexico. Front Public Health. 2021;9. doi: 10.3389/fpubh.2021.645739.
Auriemma V, Iannaccone C. COVID-19 pandemic: socio-economic consequences of social distancing measures in Italy. Front Sociol. 2020;5:575791. doi: 10.3389/fsoc.2020.575791.
Haroon MZ, Khan SA, Khan SA, et al. Estimating the Possible Role of Testing Capacity and Social Distancing in Predicting the Growth Rate of Daily Covid-19 Cases. J Ayub Med Coll Abbottabad. 2020;32(Suppl 1)(4):S686-90.
Testa PF, Snyder R, Rios E, et al. Who Stays at Home? The politics of social distancing in Brazil, Mexico, and the United States during the COVID-19 pandemic. J Health Polit Policy Law. 2021;46:929-58. doi: 10.1215/03616878-9349100.
Girma D, Dejene H, Adugna L, et al. COVID-19 Case fatality rate and factors contributing to mortality in Ethiopia: A systematic review of current evidence. Infect Drug Resist. 2022;15:3491-501. doi: 10.2147/IDR.S369266.
Sadeq A, Elnour A, Farah F, et al. Scoping review of six retrospective studies: risk factors associated with the case fatality rate of people infected with Coronavirus (COVID-19). J Pharm Bioallied Sci. 2022;14:81-92. doi: 10.4103/jpbs.jpbs_460_21.
Alimohamadi Y, Tola HH, Abbasi-Ghahramanloo A, et al. Case fatality rate of COVID-19: a systematic review and meta-analysis. J Prev Med Hyg 2021;62:E311–20. doi: 10.15167/2421-4248/jpmh2021.62.2.1627.
Shi HJ, Yang J, Eom JS, et al. Clinical Characteristics and risk factors for mortality in critical COVID-19 patients aged 50 years or younger during omicron wave in Korea: comparison with patients older than 50 years of age. J Korean Med Sci. 2023;38(28):e217. doi: 10.3346/jkms.2023.38.e217.
Ge Y, Sun S, Shen Y. Estimation of case-fatality rate in COVID-19 patients with hypertension and diabetes mellitus in the New York state: a preliminary report. Epidemiol Infect. 2021;149:e14. doi: 10.1017/S0950268821000066.
Shestakova MV, Vikulova OK, Elfimova AR, et al. Risk factors for COVID-19 case fatality rate in people with type 1 and type 2 diabetes mellitus: A nationwide retrospective cohort study of 235,248 patients in the Russian Federation. Front Endocrinol (Lausanne). 2022;13:909874. doi: 10.3389/fendo.2022.909874.
Monterrubio-Flores E, Ramírez-Villalobos MD, Espinosa-Montero J, et al. Characterizing a two-pronged epidemic in Mexico of non-communicable diseases and SARS-Cov-2: factors associated with increased case-fatality rates. Int J Epidemiol. 2021;50:430-45. doi: 10.1093/ije/dyab008.
Dirección General de Epidemiología. Datos Abiertos Bases Históricas. México: Secretaría de Salud; 2021. Disponible en: https://www.gob.mx/salud/documentos/datos-abiertos-bases-historicas-direccion-general-de-epidemiologia.
Zinatizadeh MR, Zarandi PK, Ghiasi M, et al. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev. 2023;84:101818. doi: 10.1016/j.arr.2022.101818.
Ciarambino T, Crispino P, Minervini G, et al. COVID-19 and Frailty. Vaccines. 2023;11:606. doi: 10.3390/vaccines11030606.