El desarrollo de nuevas áreas de estudio dentro de la genética, como las ciencias ómicas (transcriptómica, proteómica, metabolómica), ha permitido estudiar al genoma a diferentes niveles de regulación y expresión. Gracias a esto, actualmente se pueden estudiar las alteraciones génicas de un organismo de forma global (“genoma”) y se puede identificar el efecto que tienen estas alteraciones a nivel de proteína y de la producción de metabolitos. De manera importante, esta nueva forma de estudiar la genética ha abierto nuevos campos de conocimiento y ha dilucidado nuevos mecanismos celulares que rigen el funcionamiento de los sistemas biológicos. A nivel clínico, en los últimos años se han implementado nuevas herramientas moleculares que permiten hacer una mejor clasificación, un mejor diagnóstico, así como un pronóstico más acertado de diversas enfermedades. Asimismo, en algunos casos se han establecido mejores tratamientos que favorecen la calidad de vida de los pacientes. Debido a todo lo anterior, es importante revisar y divulgar el cambio que ha tenido el estudio de la genética gracias al desarrollo de las ciencias ómicas, el cual es el objetivo de esta revisión.
Encarnación GS, González V, Santamaría RI, Bustos P, Acosta JL, Fernández JL et al. Genómica y genómica funcional en microbiología. Rev Latinoam Microbiol. 2006;48(2):131-9.
Baker M. Genomics: Genomes in three dimensions. Nature. 2011;470:289-94.
Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer. 2007;6:1-13.
Metzker ML. Sequencing technologies — the next generation. Nature. 2010;11:31-46.
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190-5.
Danielsson K, Mun LJ, Lordemann A, Mao J, Lin CH. Next-generation sequencing applied to rare diseases genomics. Expert Rev Mol Diagn. 2014;4:469-87.
US Department of Health and Human Services. NIH News National Institutes of Health. International Consortium Announces the 1000 Genomes Project. Bethesda: National Human Genome Research Institutes, 2008.
Graudens E, Boulanger V, Mollard C, Mariage-Samson R, Barlet X, Grémy G, et al. Deciphering cellular states of innate tumor drug responses. Genome Biol. 2006;7:R19.
Nagasaki K, Miki Y. Gene expression profiling of breast cancer. Breast Cancer. 2006;13(1):2-7.
Hu N, Su H, Li WJ, Giffen C, Goldstein AM, Hu Y, et al. Allelotyping of esophageal squamous-cell carcinoma on chromosome 13 defines deletions related to family history. Genes Chromosomes Cancer. 2005;44(3):271-8.
Van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999-2009.
Pusztai L, Broglio K, Andre F, Symmans WF, Hess KR, Hortobagyi GN. Effect of molecular disease subsets on disease-free survival in randomized adjuvant chemotherapy trials for estrogen receptor-positive breast cancer. J Clin Oncol. 2008;26(28):4679-83.
Abramovitz M, Leyland-Jones B. A systems approach to clinical oncology: focus on breast cancer. Proteome Sci. 2006;4:4-5.
Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Buerger H. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor. BMC Cancer. 2005;215:84.
Shashkin PN, Jain N, Miller YI, Rissing BA, Huo Y, Keller SR, et al. Insulin and glucose play a role in foam cell formation and function. Cardiovasc Diabetol. 2006;20:5-13.
Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics. 2005;21(20):3896-904.
Minafra L, Bravatà V, Forte GI, Cammarata FP, Gilardi MC, Messa C. Gene expression profiling of epithelial-mesenchymal transition in primary breast cancer cell culture. Anticancer Res. 2014;34(5):2173-83.
Fotinos A, Nagarajan N, Martins AS, Fritz DT, Garsetti D, Lee AT, et al. Bone Morphogenetic Protein-focused Strategies to Induce Cytotoxicity in Lung Cancer Cells. Anticancer Res. 2014;34(5):2095-104.
Liu W, Li L, Li W. Gene co-expression analysis identifies common modules related to prognosis and drug resistance in cancer cell lines. Int J Cancer. 2014;26 [Epub ahead of print].
Claerhout S, Lim JY, Choi W, Park YY, Kim K, Kim SB. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer. PLoS One. 2011;6(9):e24662.
Barallobre-Barreiro J, Chung YL, Mayr M. Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease. Rev Esp Cardiol. 2013;66(8):657-61.
Kerschgens J, Egener-Kuhn T, Mermod N. Protein-binding microarrays: probing disease markers at the interface of proteomics and genomics. Trends Mol Med. 2009;15(8):352-8.
Kacerovsky M, Tambor V, Lenco J, Tosner J. Proteomics and biomarkers for detection of ovarian cancer. Ceska Gynekol. 2009;74(3):163-70.
Scrivo R, Casadei L, Valerio M, Priori R, Valesini G, Manetti C. Metabolomics approach in allergic and rheumatic diseases. Curr Allergy Asthma Rep. 2014;14(6):445.
Dessi A, Corsello G, Stronati M, Gazzolo D, Caboni P, Carboni R, et al. New diagnostic possibilities in systemic neonatal infections: metabolomics. Early Hum Dev. 2014;90S1:S19-S21.
Nikolic SB, Sharman JE, Adams MJ, Edwards LM. Metabolomics in hypertension. J Hypertens. 2014;26 [Epub ahead of print].
Kaur P, Rizk N, Ibrahim S, Luo Y, Younes N, Perry B, et al. Quantitative metabolomic and lipidomic profiling reveals aberrant amino acid metabolism in type 2 diabetes. Mol Biosyst. 9(2):307-17.
Mo ML, Palsson BO. Understanding human metabolic physiology: a genome-to-systems approach. Trends Biotechnol. 2009;27:37-44.
Jordan JD, Landau EM, Lyengar R. Signaling networks: the origins of cellular multitasking. Cell. 2000;103:193-200.
Davidson EH. Emerging properties of animal gene regulatory networks. Nature. 2010;468:911-20.
Babu MM, Janga SC, de Santiago I, Pombo A. Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev. 2008;18:571-82.
Shahrezaei V, Swain PS. The stochastic nature of biochemical networks. Curr Opin Biotechnol. 2008;19:369-74.
Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008;18:644-52.
Hanahan D, Weinberg R. The hallmarks of cancer. The next generation. Cell. 2011;144:646-74.
Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis. 2010;31:2-8.
Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT. Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 2010:70:6704-14.
Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56-68.
Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Drug-target network. Nat Biotechnol. 2017;25:1119-26.
Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8:450-61.
Shlomi T, Eisenberg Y, Sharan R, Ruppin E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol. 2007;3:101.
Ma’ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler R, et al. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science. 2005; 309:1078-83.
Locasale JW, Vander Heiden MG, Cantley LC. Rewiring of glycolysis in cancer cell metabolism. Cell Cycle. 2010;9:4253.
Vander Heiden MG. Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010;329:1492-9.
O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activated. Akt Cancer Res. 2006;66:1500-8.