Resumen
La tuberculosis es una enfermedad ancestral que ha acompañado a la humanidad por los últimos tres mil años, y es considerada la enfermedad infecciosa más antigua que aún existe. El bacilo de Mycobacterium tuberculosis fue esparcido por todo el mundo gracias a las migraciones humanas, y existe evidencia arqueológica de casos de tuberculosis espinal en momias de Egipto y en la región andina, así como textos que atribuyen la enfermedad a factores sociales, antes de sospechar su carácter infeccioso. Durante toda su historia, el humano ha lidiado con esta patología, desarrollando terapias inusuales poco efectivas, lo cual llevó a un aumento importante de la mortalidad de la enfermedad. En el siglo pasado se introdujeron los primeros antibióticos y con ellos la esperanza de erradicar a esta enfermedad, sin embargo, la presión evolutiva ha hecho surgir cepas con multirresistencia a los fármacos. Hoy en día, el desarrollo de técnicas informáticas, como la inteligencia artificial, nos ha dado nuevas esperanzas para la generación de fármacos y posibles terapias inmunomoduladoras. Sin embargo, es importante tener en cuenta que el hombre que no conoce su historia está condenado a repetirla. En la presente revisión hacemos un resumen de la historia de la tuberculosis, analizando desde las teorías de su posible origen hasta su descubrimiento, la creación de los primeros tratamientos empíricos, vacunas, y surgimiento de nuevos antibióticos, así como la forma en la que la micobacteria crea rápidamente resistencia.
Abstract
Tuberculosis is an ancient disease that has accompanied humanity for the last three thousand years and is considered the oldest infectious disease that still exists. The Mycobacterium tuberculosis bacillus was spread worldwide due to human migrations, and there is archaeological evidence of spinal tuberculosis cases in Egyptian and Andean mummies, as well as texts that attributed the disease to social factors before suspecting its infectious nature. Throughout its history, humans have dealt with this pathology by developing unusual and ineffective therapies, leading to a significant increase in the disease’s mortality. In the past century, the first antibiotics were introduced, bringing hope to eradicate this disease. However, evolutionary pressure has led to the emergence of multi-drug-resistant strains. Today, the development of computational techniques, such as artificial intelligence, has given us new hope for generating drugs and potential immunomodulatory therapies. However, it is essential to remember that those who do not know their history are doomed to repeat it. In this review, we summarize the history of tuberculosis, analyzing theories of its possible origin, its discovery, the creation of the first empirical treatments, vaccines, the emergence of new antibiotics, and how the mycobacterium quickly develops resistance.
World Health Organization. Global tuberculosis report 2023. World Health Organization; 2023.
Situación Epidemiológica en México: “Trabajando unidos para poner fin a la tuberculosis”. Secretaria de Salud; Centro Nacional de Programas Preventivos y Control de Enfermedades; 2021.
Shuaib YA, Utpatel C, Kohl TA, et al. Origin and Global Expansion of Mycobacterium tuberculosis Complex Lineage 3. Genes (Basel). 2022;13(6):13.
Orgeur M, Sous C, Madacki J, et al. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2024;48 (2):48.
Sabin S, Herbig A, Vågene Å J, et al. A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol. 2020;21(1):201.21.
Madacki J, Orgeur M, Mas Fiol G, et al. ESX-1-Independent Horizontal Gene Transfer by Mycobacterium tuberculosis Complex Strains. mBio. 2021;12(3).12.
Atavliyeva S, Auganova D, Tarlykov P. Genetic diversity, evolution and drug resistance of Mycobacterium tuberculosis lineage 2. Front Microbiol. 2024;15:1384791.
Sarojini S, Mundayoor S. An ancestral genomic locus in Mycobacterium tuberculosis clinical isolates from India hints the genetic link with Mycobacterium canettii. Int Microbiol. 2020;23 (3):397-404.
Kanipe C, Palmer MV. Mycobacterium bovis and you: A comprehensive look at the bacteria, its similarities to Mycobacterium tuberculosis, and its relationship with human disease. Tuberculosis (Edinb). 2020;125:102006.
Matur AV, Mejia-Munne JC, Plummer ZJ, et al. The History of Anterior and Lateral Approaches to the Lumbar Spine. World Neurosurg. 2020;144:213-21.
Mulholland CV, Shockey AC, Aung HL, et al. Dispersal of Mycobacterium tuberculosis Driven by Historical European Trade in the South Pacific. Front Microbiol. 2019;10:2778.
Riccardi N, Canetti D, Martini M, et al. The evolution of a neglected disease: tuberculosis discoveries in the centuries. J Prev Med Hyg. 2020;61(1 Suppl 1):E9-e12.
Sabbatani S, Fiorino S. Pestilence, riots, lynchings and desecration of corpses. The sleep of reason produces monsters. Infez Med. 2016;24(2):163-71.
Dar JA, Srivastava KK, Mishra A. Lung anomaly detection from respiratory sound database (sound signals). Comput Biol Med. 2023;164:107311.
Koegelenberg CFN, Schoch OD, Lange C. Tuberculosis: The Past, the Present and the Future. Respiration. 2021;100(7): 553-6.
Fellag M, Loukil A, Drancourt M. The puzzle of the evolutionary natural history of tuberculosis. New Microbes New Infect. 2021;41:100712.
Michaleas SN, Protogerou AD, Sipsas NV, et al. The Anti-tuberculosis Battle in Greece in the 1800s and 1900s. Cureus. 2022; 14(6):e26023.
Natarajan A, Beena PM, Devnikar AV, et al. A systemic review on tuberculosis. Indian J Tuberc. 2020;67(3):295-311.
Liebert A, Kiat H. The history of light therapy in hospital physiotherapy and medicine with emphasis on Australia: Evolution into novel areas of practice. Physiother Theory Pract. 2021;37 (3):389-400.
Santos-Mena A, González-Muñiz OE, Jacobo-Delgado YM, et al. Shedding light on vitamin D in tuberculosis: A comprehensive review of clinical trials and discrepancies. Pulm Pharmacol Ther. 2024;85:102300.
Zwick ED, Pepperell CS. Tuberculosis sanatorium treatment at the advent of the chemotherapy era. BMC Infect Dis. 2020;20 (1):831.
Pahal P, Pollard EJ, Sharma S. PPD Skin Test. StatPearls Publishing LLC.; 2024.
Lange C, Aaby P, Behr MA, et al. 100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infect Dis. 2022;22(1): e2-e12.
Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. Curr Res Pharmacol Drug Discov. 2021;2:100037.
Bi K, Cao D, Ding C, et al. The past, present and future of tuberculosis treatment. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022;51(6):657-68.
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med. 2019;11(1):45.
Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, et al. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol. 2023;14:1194923.
Hernando-Amado S, Coque TM, Baquero F, et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol. 2019;4(9):1432-42.
Prasanna A, Niranjan V. Classification of Mycobacterium tuberculosis DR, MDR,XDR Isolates and Identification of Signature MutationPattern of Drug Resistance. Bioinformation. 2019;15(4):261-8.
Papadimou D, Malmqvist E, Ancillotti M. Socio-cultural determinants of antibiotic resistance: a qualitative study of Greeks’ attitudes, perceptions and values. BMC Public Health. 2022; 22(1):1439.
Rodríguez-Carlos A, Jacobo-Delgado Y, Santos-Mena AO, et al. Histone deacetylase (HDAC) inhibitors- based drugs are effective to control Mycobacterium tuberculosis infection and promote the sensibility for rifampicin in MDR strain. Mem Inst Oswaldo Cruz. 2023;118:e230143.
Rodriguez-Carlos A, Valdez-Miramontes C, Marin-Luevano P, et al. Metformin promotes Mycobacterium tuberculosis killing and increases the production of human β-defensins in lung epithelial cells and macrophages. Microbes Infect. 2020;22(3): 111-8.
Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis. N Engl J Med. 2022;387(9):810-23.
Jacobo-Delgado YM, Torres-Juarez F, Rodríguez-Carlos A, et al. Retinoic acid induces antimicrobial peptides and cytokines leading to Mycobacterium tuberculosis elimination in airway epithelial cells. Peptides. 2021;142:170580.
Aguilera-Puga MDC, Cancelarich NL, Marani MM, et al. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. Methods Mol Biol. 2024;2714:329-52.