ISSN: 0443-511
e-ISSN: 2448-5667
Usuario/a
Idioma
Herramientas del artículo
Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)
Tamaño de fuente

Open Journal Systems

Escaneo genómico completo en diabetes tipo 2 y su aplicación clínica

Dagoberto Esparza-Castro, Francisco Javier Andrade-Ancira, Carlos Adrián Merelo-Arias, Miguel Cruz, Adán Valladares-Salgado

Resumen


La diabetes mellitus es una enfermedad compleja y crónica que representa uno de los más grandes problemas de salud en el mundo. Debido a las alarmantes cifras que evidencian el constante aumento de casos, se exige la creación de nuevas técnicas diagnósticas, terapéuticas y de prevención. El estudio de escaneo genómico completo (GWA por sus siglas en inglés, genome wide asssociation) en diabetes tipo 2 (DT2) representa una herramienta útil de investigación para la caracterización de marcadores genéticos y vías fisiopatogénicas con potencial utilidad clínica, ya sea como predicción de riesgo a DT2 o a complicaciones. En México es necesario hacer una disección comprensiva del fondo genético de la DT2, debido al complejo mosaico genético de nuestra población, pues se requiere para incrementar el conocimiento molecular y fisiopatológico que conduce a esta condición. Existen diversos estudios genéticos para la población mexicana vinculados al proyecto de los 1000 genomas, que han llevado a definir algunos marcadores genéticos específicos para nuestra población no descritos en poblaciones europeas. Hasta este momento se han asociado 78 loci a DT2. Recientemente, en el metaanálisis mundial con la participación de México, demostramos al menos 7 nuevas variantes asociadas a DT2.


Palabras clave


Diabetes mellitus tipo 2; Genes; Estudio de asociación del genoma completo

Texto completo:

PDF HTML PubMed HTML (English)

Referencias


American Diabetes Association. Standards of Medical Care in Diabetes-2014,Diabetes Care. 2014;37 (1):14-80.

 

J. E. Shaw, R. A. Sicree, P. Z. Zimmet. Global estimates of the prevalence of diabetes for 2010 and 2030,Diabetes Researchand Clinical Practice, 2010. 87(1):4-14.

 

Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G , Walts B, et al. The human obesity gene map: the 2005 update. Obes Res. 2006; 14: 529-644.

 

J.Peralta, J Goméz, B. Estrada, R Karam, M. Cruz, Genética de la obesidad infantil. Rev Med Inst Mex Seguro Soc. 2014;52(supl 1):S78-S87.

 

Vimaleswaran KS, Loos RJ. Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med 2010;12:e7.

 

Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. The New England Journal ofMedicine. 2008; 359(21):2208-19.

 

M. vanHoek, A. Dehghan, J. C. M. Witteman. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes. 2008;57(11):3122-28.

 

Cornelis MC, Qi L, Zhang C, Kraft P, Manson J, Cai T, et al. Joint effects of common genetic variants on the risk for type 2 diabetes in US men and women of European ancestry. Annals of Internal Medicine. 2009;150(8):541-50.

 

V. Lyssenko, A. Jonsson, P. Almgren, N. Pulizzi, B. Isomaa, T. Tuomi. Clinical risk factors, DNA variants, and the development of type 2 diabetes. The NewEngland Journal of Medicine. 2008; 359(21): 2220-32.

 

Xue Sun, Weihui Yu, Cheng Hu. Genetics of Type 2 Diabetes: Insights into the Pathogenesis and Its Clinical Application. Hindawi Publishing CorporationBioMed Research International. 2014;2014, Article ID 926713.

 

S. S. Fajans, G. I. Bell, K. S. Polonsky. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young.The New England Journal of Medicine. 2001; 345(13):971-80.

 

I. Barroso. Genetics of type 2 diabetes.Diabetic Medicine. 2005;22(5):517-35.

 

M. Vaxillair, P. Froguel. Monogenic diabetes in the young, pharmacogenetics and relevance tomultifactorial forms of type 2 diabetes.Endocrine Reviews. 2008;29(3)254-64.

 

S. F. A. Grant, G. Thorleifsson, I. Reynisdottir, R. Benediktsson, A. Manolescu, J. Sainz, et al.Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.Nature Genetics. 2006; 38(3):320-23.

 

Y. Horikawa, N. Oda, N. J. Cox, X. Li, M Orho-Melander, M Hara, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus.Nature Genetics. 2000;26(2):163-75.

 

D.Meyre, N. Bouatia-Naji,A. Tounian, C. Samson, C Lecoeur, V. Vatin,et al. Variants of ENPP1 are associatedwithchildhoodandadultobesity andincrease the risk of glucose intolerance and type 2 diabetes.Nature Genetics. 2005;37(8):863-67.

 

L. D. Love-Gregory, J. Wasson, J. Ma, C. H. Jin, B. Glaser, B. K. Suarez,et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4a gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes. 2004;53(4):1134-40.

 

F. Vasseur, N. Helbecque, C. Dina, S. Lobbens, V. Delannoy, S. Gaget, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians.Human Molecular Genetics. 2002; 11(21): 2607-14.

 

D. Altshuler, J. N. Hirschhorn, M. Klannemark. The common PPARg Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.Nature Genetics 2000;26(1)1:76-80.

 

S. S.Deeb, L. Fajas,M.Nemoto, J Pihlajamäki, L. Mykkänen, J. Kuusisto,et al., APro12Ala substitution in PPARg2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity.Nature Genetics 1998;20(3):284-7.

 

M. S. Sandhu, M. N. Weedon, K. A. Fawcett, J. Wasson, S. L. Debenham, A. Daly,et al. Common variants in WFS1 confer risk of type 2 diabetes. Nature Genetics. 2007;39(8):951-3.

 

J. Gudmundsson, P. Sulem, V. Steinthorsdottir, J. T. Bergthorsson, G. Thorleifsson, A. Manolescu,et al.Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes.Nature Genetics. 2007;39(8):977-83.

 

E. Zeggini, M. N. Weedon, C. M. Lindgren, T. M. Frayling, K. S. Elliot, H. Lango,et al.Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.Science. 2007; 316(5829):1336-41.

 

R. Saxena, B. F. Voight, V. Lyssenko, N. P.Burtt, P. I. de Bakker, H. Chen, et al.Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels.Science. 2007;316(5829):1331-6.

 

L. J. Scott, K. L.Mohlke,L.L.Bonnycastle, C. J. Willer, Y. Li, W. L. Duren, et al. Agenome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007; 316 (5829):1341-5.

 

V. Steinthorsdottir, G. Thorleifsson, I. Reynisdottir, R. Benediktsson, T. Jonsdottir , G. B. Walters, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics. 2007; 39(6):770-5.

 

R. Sladek, G. Rocheleau, J. Rung, G. Rocholeau, J. Rung, C. Diana,et al.A genome-wide association study identifies novel risk loci for type 2 diabetes.Nature. 2007;445(7130):881-5.

 

Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al., Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007; 447(7145):661-68.

 

Antonio Brunetti, Eusebio Chiefari, Daniela Foti. Recent advances in the molecular genetics of type 2 diabetes mellitus.World J Diabetes.2014; 5(2):128-40. 

 

Diabetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, Mexican American Type 2 Diabetes (MAT2D) Consortium & Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) Consortium. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics. 2014; 46(3):234-44.

 

Secretaria de Salud. Encuesta Nacional de Salud y Nutrición (ENSANUT) Secretaria de Salud. 2012, México. 

 

Norihiro Kato. Insights into the genetic basis of type 2 diabetes. J Diabetes Invest. 2013;4(3)233-44

 

Verónica L. Martinez-Marignac, Adan Valladares, Emily Cameron, Chan Andrea, Arjuna Perera, Rachel Globus-Goldberg, et al. Admixture in Mexico City: implications for admixture mapping of type 2 diabetes genetic risk factors. Diabetes. Hum Genet 2007;120:807-819.

 

E. J. Parra, J. E. Below, S. Krithika, A. Valladares, J. L. Barta, N. J. Cox, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County,Texas. Diabetologia. 2011; 54(8):2038-46.

 

Visscher PM, Hill WG, Wray NR. Heritability in the genomics era-concepts and misconceptios. Nat Rev Genet. 2008;9:255-66.

 

J. Rung, S. Cauchi, A. Albrechtsen,L. Shen, G. Rocheleau, C. Cavalcanti-Proenca, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia.Nature Genetics 2009;41(10):1110-5.

 

B. F. Voight, L. J. Scott, V. Steinthorsdottir. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics. 2010;42(7):579-89.

 

T. W. Boesgaard, A. P. Gjesing, N. Grarup, J. Rutanen, P. A. Jansson, M. L. Hribal, et al. Variant near ADAMTS9known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients— EUGENE2 study.PLoS ONE. 2009;4(9):7236.

 

A. Anand and K. Chada. In vivo modulation of Hmgic reduces obesity.Nature Genetics.2000;24(4):377-80.

 

T. Q. Binh, P. T. Phuong, B. T. Nhung, D. D. Thoang, H. T. Lien, D. V. Thanh. Association of the common FTO-rs9939609 polymorphism with type 2 diabetes, independent of obesity-related traits in a Vietnamese population.Gene. 2013;513(1):31-35.

 

B. Xi, F. Takeuchi, G. R. Chandak. Common polymorphism near the MC4R gene is associated with type 2 diabetes: data fromameta-analysis of 123, 373 individuals.Diabetologia. 2012;55(10):2660-6.

 

O. le Bacquer, J. Kerr-Conte, S. Gargani, N. Delalleau, M. Huyvaert, V. Gmyr, et al. TCF7L2 rs7903146 impairs islet function and morphology in nondiabeticindividuals.Diabetologia. 2012;55(10):2677-81.

 

Q. Qi and F. B. Hu. Genetics of type 2 diabetes in European populations. Journal of Diabetes. 2012; 4 (3):203-12.

 

M. Imamura, D. Shigemizu, T. Tsunoda, et al. Assessing the clinical utility of a genetic risk score constructed using 49 susceptibility alleles for type 2 diabetes in a Japanese population.The Journal of Clinical Endocrinology &Metabolism. 2013; 98(10): 1667-73.

 

J. N. Cooke, M. C. Y. Ng, N. D. Palmer, S. S. An, J. M. Hester, B. I. Freedman, et al. Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans. Diabetes Care. 2012; 35(2):287-92.

 

M. Iwata, S. Maeda, Y. Kamura. Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care. 2012;35(8):1763-70.

 

Torres J, Gamazon E, Parra E, Below J, Valladares-Salgado A, Wacher N, et al.. Cross-Tissue and Tissue-Specific eQTLs: Partitioning the Heritability of a Complex Trait. American Journal of Human Genetics. 2014;95(5):521-534.


Enlaces refback

  • No hay ningún enlace refback.