COVID-19 and the predominant groups of preventive behaviors and associated factors: semi-urban area
Main Article Content
Keywords
Disease Prevention, Risk Factors, Behavior Health-Related, Health Behavior, COVID-19
Abstract
Background: Non-pharmacological interventions (NFI) or preventive actions (PA) are the best alternatives to control future pandemics, especially in vulnerable populations, such as semi-urban areas.
Objective: To describe the predominant health behavior groups (HBG) and associated factors during the third wave of COVID-19 in a semi-urban area. Material and methods: A survey which included characteristics, factors related to COVID-19, perceptions of health behavior and PA was applied in a probabilistic sample in a first-level hospital in the State of Mexico. People of both sexes over 18 years of age were included. Using a hierarchical cluster analysis, HBGs were obtained and characterized with a descriptive and multivariate statistical analysis.
Results: In a probabilistic sample (n = 260), 4 HBGs were identified: 2 of high-risk (HRG) and 2 of low-risk (LRG), and the proportions were 43.5% y 56.5%, respectively. The sociodemographic characteristics of both groups were similar. Perceptions of severity and COVID-19-related barriers significantly influenced health behaviors in LRG. In HRG, low security played a significant role, highlighting the importance of comorbidities as a clinical factor.
Conclusions: In a semi-urban area, 2 crucial health behaviors were identified: one associated with low risk and the other with high risk. In the HRG, the perception of insecurity was particularly relevant, emphasizing the importance of comorbidities as a clinical factor.
References
Odusanya OO, Odugbemi BA, Odugbemi TO, et al. COVID-19: A review of the effectiveness of non-pharmacological interventions. Niger Postgrad Med J. 2020;27:261-267. doi: 10.4103/npmj.npmj_208_20.
Sánchez-Arenas R, Doubova SV, González-Pérez MA, et al. Factors associated with COVID-19 preventive health behaviors among the general public in Mexico City and the State of Mexico. PLoS One. 2021;16:e0254435. doi: 10.1371/journal.pone.0254435.
Shi HJ, Kim NY, Eom SA, et al. Effects of Non-Pharmacological Interventions on Respiratory Viruses Other Than SARS-CoV-2: Analysis of Laboratory Surveillance and Literature Review From 2018 to 2021. J Korean Med Sci. 2022;37:e172. doi: 10.3346/jkms.2022.37.e172.
Rosenstock IM, Strecher VJ, Becker MH. Social learning theory and the Health Belief Model. Health Educ Q. 1988;15:175-83. doi:10.1177/109019818801500203.
Costa MF. Health belief model for coronavirus infection risk determinants. Rev Saude Publica. 2020;54:47. doi: 10.11606/s1518-8787.2020054002494.
Moreno San Pedro E, Gil Roales-Nieto J. El Modelo de Creencias de Salud: Revisión Teórica, Consideración Crítica y Propuesta alternativa. I: Hacia un Análisis Funcional de las Creencias en Salud. Rev Int Psicol Ter Psicol. 2003;3(1):91-109. Disponible en: https://www.redalyc.org/ pdf/560/56030105.pdf.
Zewdie A, Mose A, Sahle T, et al. The health belief model's ability to predict COVID-19 preventive behavior: A systematic review. SAGE Open Med. 2022;10:20503121221113668. doi: 10.1177/20503121221113668.
World Health Organization. WHO Coronavirus (COVID-19) Dashboard [consultada el 23 de junio de 2023]. Disponible en: https://covid19.who.int/
Palacio-Mejía LS, Hernández-Ávila JE, et al. Leading causes of excess mortality in Mexico during the COVID-19 pandemic 2020-2021: A death certificates study in a middle-income country. Lancet Reg Health Am. 2022 Sep;13:100303. doi: 10.1016/j.lana.2022.100303.
Irigoyen-Camacho ME, Velazquez-Alva MC, Zepeda-Zepeda MA, et al. Effect of Income Level and Perception of Susceptibility and Severity of COVID-19 on Stay-at-Home Preventive Behavior in a Group of Older Adults in Mexico City. Int J Environ Res Public Health. 2020 Oct 12;17(20):7418. doi: 10.3390/ijerph17207418.
Coetzee BJ, Kagee A. Structural barriers to adhering to health behaviours in the context of the COVID-19 crisis: Considerations for low- and middle-income countries. Glob Public Health. 2020;15:1093-1102. doi: 10.1080/17441692.2020.1779331.
Wilson-VanVoorhis CR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor Quant Method Psychol. 2007; 3:43–50.doi: 10.20982 /tqmp.03.2.p043.
Bish A, Michie S. Demographic and attitudinal determinants of protective behaviours during a pandemic: a review. Br J Health Psychol. 2010;15:797-824. doi: 10.1348/135910710X485826.
Fujii R, Suzuki K, Niimi J. Public perceptions, individual characteristics, and preventive behaviors for COVID-19 in six countries: a cross-sectional study. Environ Health Prev Med. 2021;26:29. doi: 10.1186/s12199-021-00952-2.
Nishimi K, Borsari B, Marx BP, et al. Clusters of COVID-19 protective and risky behaviors and their associations with pandemic, socio-demographic, and mental health factors in the United States. Prev Med Rep. 2022;25:101671. doi: 10.1016/j.pmedr.2021.101671.
Endalew M, Belay DG, Tsega NT, et al. Limited handwashing facility and associated factors in sub-Saharan Africa: pooled prevalence and multilevel analysis of 29 sub-Saharan Africa countries from demographic health survey data. BMC Public Health. 2022;22:1969. doi: 10.1186/s12889-022-14390-4.
Ross I, Bick S, Ayieko P, et al. Effectiveness of handwashing with soap for preventing acute respiratory infections in low-income and middle-income countries: a systematic review and meta-analysis. Lancet. 2023;401:1681-1690. doi: 10.1016/S0140-6736(23)00021-1.
Lázaro J. Ixtlahuaca, municipio mexiquense con más muertos por COVID-19 [Internet]. Estado de México: La silla rota; 6 Mayo 2020 [Consultado 20 Jun 2023].Disponible en : https://lasillarota.com/metropoli/2020/5/6/ixtlahuaca-municipio-mexiquense-con-mas-muertos-por-covid-19-228208.html
Aguilar A. Estos son los 10 municipios mexiquenses con más casos activos al inicio de la tercera ola del Covid-19. El Sol de Toluca; 22/07/2021. Disponible en: https://www. elsoldetoluca.com.mx/local/estos-son-los-10-municipios-mexiquenses-con-mas-casos-activos-al-inicio-de-la-tercera-ola-del-covid-19-6995332.html.
Francis AI, Ghany S, Gilkes T, et al. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad Med J. 2022 May;98(1159):389-394. doi: 10.1136/postgradmedj-2021-140654.
Frutos-Cortés M. El impacto de COVID-19 en la salud mental de los jóvenes universitarios. Ciudad de México: Instituto Nacional de Administración Pública; mayo-agosto de 2020. Disponible en: https://inap.mx/wp-content/uploads/2020/12/rap152.pdf.
Alagili DE, Bamashmous M. The Health Belief Model as an explanatory framework for COVID-19 prevention practices. J Infect Public Health. 2021;14:1398-403. doi: 10.1016/j.jiph.2021.08.024.
García-Dolores F, Tendilla-Beltrán H, Flores F, et al. Increased suicide rates in Mexico City during the COVID-19 pandemic outbreak: An analysis spanning from 2016 to 2021. Heliyon. 2023;9(6):e16420. doi: 10.1016/j.heliyon.2023.e16420.
Almeida M, Shrestha AD, Stojanac D, et al. The impact of the COVID-19 pandemic on women's mental health. Arch Womens Ment Health. 2020;23(6):741-748. doi: 10.1007/s00737-020-01092-2.
Matthews TA, Chen L, Omidakhsh N, et al. Gender difference in working from home and psychological distress - A national survey of U.S. employees during the COVID-19 pandemic. Ind Health. 2022;60:334-344. doi: 10.2486/indhealth.2022-0077.
Comisión Económica para América Latina y el Caribe. Mortalidad por COVID-19 y las desigualdades por nivel socioeconómico y por territorio. CEPAL; 22 de noviembre de 2021. Disponible en: https://www.cepal.org/es/enfoques/mortalidad-covid-19-desigualdades-nivel-socioeconomico-territorio.
Weston D, Ip A, Amlôt R. Examining the application of behaviour change theories in the context of infectious disease outbreaks and emergency response: a review of reviews. BMC Public Health. 2020;20:1483. doi: 10.1186/s12889-020-09519-2.