High glucose levels in children at diagnosis of acute lymphoblastic leukemia

Main Article Content

Carlos Paque-Bautista https://orcid.org/0000-0002-2658-0491
Sara Aurora Aranda-Romo https://orcid.org/0009-0005-3199-4137
Andrea Medel-Sánchez https://orcid.org/0009-0005-3199-4137
Alma Patricia González https://orcid.org/0000-0002-3401-7519
Dania Eunice Cerritos-García https://orcid.org/0000-0002-8944-6927
Arturo Maximiliano Reyes-Sosa https://orcid.org/0000-0002-1233-4580
Gloria Patricia Sosa-Bustamante

Keywords

Leukemia, Blood Glucose, Child, Hematology, Pediatrics

Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most common neoplasm in children. Although survival rates have improved, considerable mortality persists, partly due to metabolic complications. ALL is characterized by metabolic reprogramming, which may clinically manifest as elevated serum glucose (SG) levels at disease onset.


Objective: To analyze whether there are differences in SG levels between newly diagnosed pediatric patients with ALL and a control group.


Materials and methods: A case-control study was conducted. Pediatric patients aged between 1 month and 15 years 11 months, of both sexes, were included and divided into two groups. ALL Group: Patients with a recent diagnosis of ALL, prior to the initiation of induction therapy. Control Group: Patients without a diagnosis of ALL. Sociodemographic, anthropometric, and biochemical data were obtained from clinical records.


Results: A total of 142 patients were analyzed, 71 in the ALL Group and 71 in the Control Group. The median age was 6 years (IQR 3–11), and 54.92% were male. The ALL Group showed significantly higher SG levels compared to the Control Group. In addition, a higher risk of elevated SG was observed in the ALL Group.


Conclusions: This study demonstrates elevated SG levels in children with newly diagnosed ALL, which may be related to the metabolic reprogramming of leukemic cells.

Abstract 22 | PDF (Spanish) Downloads 18

References

1. Zapata-Tarrés M, Balandrán JC, Rivera-Luna R, et al. Childhood Acute Leukemias in Developing Nations: Successes and Challenges. Curr Oncol Rep. 2021;23(5):56. doi: 10.1007/s11912-021-01043-9.
2. Chang JH, Poppe MM, Hua CH, et al. Acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021;68 Suppl 2:e28371. doi: 10.1002/pbc.28371.
3. Rivera-Luna R, Zapata-Tarres M, Shalkow-Klincovstein J, et al. The burden of childhood cancer in Mexico: Implications for low- and middle-income countries. Pediatr Blood Cancer. 2017;64(6). doi: 10.1002/pbc.26366.
4. Leukaemia. Deaths by sex and age group for a selected country or area and year. WHO Mortality Database. Disponible en: https://platform.who.int/mortality/themes/theme-details/topics/indicator-groups/indicator-group-details/MDB/leukaemia#
5. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146-1162. doi: 10.1016/S0140-6736(19)33018-1.
6. Bose S, Le A. Glucose Metabolism in Cancer. Adv Exp Med Biol. 2018;1063:3-12. doi: 10.1007/978-3-319-77736-8_1.
7. Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599(6):1745-1757. doi: 10.1113/JP278810.
8. Chan LN, Chen Z, Braas D, et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature. 2017;542(7642):479-483. doi: 10.1038/nature21076.
9. Savage B, Cole PD, Lin H. Racial and Economic Differences in the Risk of Hyperglycemia in Children Hospitalized with Acute Lymphoblastic Leukemia. J Pediatr Oncol Nurs. 2021;38(5):277-284. doi: 10.1177/10434542211011040.
10. Handattu K, Sharma LK, Vijayasekharan K, et al. Drug Induced Diabetes Mellitus in Pediatric Acute Lymphoblastic Leukemia: Approach to Diagnosis and Management. J Pediatr Hematol Oncol. 2022;44(6):273-279. doi: 10.1097/MPH.0000000000002494.
11. McCormick MC, Sharp E, Kalpatthi R, et al. Hyperglycemia requiring insulin during acute lymphoblastic leukemia induction chemotherapy is associated with increased adverse outcomes and healthcare costs. Pediatr Blood Cancer. 2020;67(9):e28475. doi: 10.1002/pbc.28475.
12. American Diabetes Association Professional Practice Committee. Children and Adolescents: Standards of Care in Diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S258-S281. doi: 10.2337/dc24-S014.
13. Ahmad OB, Boschi-Pinto C, Lopez AD, et al. Age standardization of rates: a new who standard. GPE Discussion Paper Series: No.31 EIP/GPE/EBD. World Health Organization. 2001.
14. Organización Mundial de la Salud. Child growth standards: Weight-for-age charts. Ginebra: Organización Mundial de la Salud. Disponible en: https://www.who.int/childgrowth/standards/weight_for_age/en/
15. Rodd C, Metzger DL, Sharma A; Canadian Pediatric Endocrine Group (CPEG) Working Committee for National Growth Charts. Extending World Health Organization weight-for-age reference curves to older children. BMC Pediatr. 2014;14:32. doi: 10.1186/1471-2431-14-32
16. Organización Mundial de la Salud. Curso de Capacitación sobre la Evaluación del Crecimiento del Niño: Patrones de Crecimiento del Niño de la OMS. Apartado C: Interpretando los Indicadores de Crecimiento. Ginebra: Organización Mundial de la Salud; 2008. Disponible en: https://www3.paho.org/hq/dmdocuments/2009/Module_C_final.pdf
17. Sawyer SM, Azzopardi PS, Wickremarathne D, et al. The age of adolescence. Lancet Child Adolesc Health. 2018;2(3):223-228. doi: 10.1016/S2352-4642(18)30022-1.
18. Chakraborty S, Balan M, Sabarwal A, et al. Metabolic reprogramming in renal cancer: Events of a metabolic disease. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188559. doi: 10.1016/j.bbcan.2021.188559.
19. Hong SH, Noh E, Kim J, et al. Fasting Plasma Glucose Variability and Gastric Cancer Risk in Individuals Without Diabetes Mellitus: A Nationwide Population-Based Cohort Study. Clin Transl Gastroenterol. 2020;11(9):e00221. doi: 10.14309/ctg.0000000000000221.
20. Gatzioura I, Papakonstantinou E, Dimitriadou M, et al. Glucose Levels Before the Onset of Asparaginase Predicts Transient Hyperglycemia in Children With Acute Lymphoblastic Leukemia. Pediatr Blood Cancer. 2016;63(7):1181-4. doi: 10.1002/pbc.25956.
21. Hill R, Hamby T, Levitt M, et al. Proactive Glucose Screening Tool Effective for Time-sensitive Identification of Hyperglycemia in Childhood Cancer Patients. J Pediatr Hematol Oncol. 2023;45(6):e695-e701. doi: 10.1097/MPH.0000000000002674.
22. Rivera P, Martos-Moreno GÁ, Barrios V, et al. A combination of circulating chemokines as biomarkers of obesity-induced insulin resistance at puberty. Pediatr Obes. 2021;16(2):e12711. doi: 10.1111/ijpo.12711.
23. Welsch S, Sawadogo K, Brichard B, et al. Characterization and risk factors of hyperglycaemia during treatment of childhood hematologic malignancies. Diabetic Medicine. 2022;39.
24. Kartal İ, Alaçam A, Dağdemir A, et al. Frequency of obesity and metabolic syndrome in childhood leukemia and lymphoma survivors. Diabetol Metab Syndr. 2022;14(1):16. doi: 10.1186/s13098-022-00790-4.
25. Ahn BY, Kim B, Park S, et al. Cumulative exposure to impaired fasting glucose and gastrointestinal cancer risk: A nationwide cohort study. Cancer. 2024;130(10):1807-1815. doi: 10.1002/cncr.35197.
26. Quiroga-Morales LA, Sat-Muñoz D, Martínez-Herrera BE, et al. Enfermedad mamaria benigna y riesgo de cáncer de mama: sobrepeso-obesidad, bioquímica, antropometría. Rev Med Inst Mex Seguro Soc. 2020;58(Supl 1):S4-S12. doi: 10.24875/RMIMSS.M21000110.
27. Zhang Q, Zhao G, Yang N, et al. Fasting blood glucose levels in patients with different types of diseases. Prog Mol Biol Transl Sci. 2019;162:277-292. doi: 10.1016/bs.pmbts.2019.01.004.
28. Jones CL, Inguva A, Jordan CT. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell. 2021;28(3):378-393. doi: 10.1016/j.stem.2021.02.013.
29. Su M, Shan S, Gao Y, et al. 2-Deoxy-D-glucose simultaneously targets glycolysis and Wnt/β-catenin signaling to inhibit cervical cancer progression. IUBMB Life. 2023;75(7):609-623. doi: 10.1002/iub.2706.
30. El-Tanani M, Rabbani SA, El-Tanani Y, et al. Metabolic vulnerabilities in cancer: A new therapeutic strategy. Crit Rev Oncol Hematol. 2024;201:104438. doi: 10.1016/j.critrevonc.2024.104438.
31. Cano-Vázquez EN, Galmich-Gómez ÁA, Soto-Flores PA, et al. Depresión, ansiedad y calidad de vida en pacientes pediátricos con leucemia. Rev Med Inst Mex Seguro Soc. 2022;60(5):517-523.