Main Article Content
Marcela Pérez-Rodríguez
<p>Centro de Adiestramiento en Investigación Clínica, Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México</p>
Rodolfo Rivas-Ruiz
<p>Centro de Adiestramiento en Investigación Clínica, Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México</p>
Lino Palacios-Cruz
<p>Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Dr. Ramón de la Fuente Muñiz”, Secretaría de Salud, Ciudad de México</p>
Juan O Talavera
<p>Centro de Adiestramiento en Investigación Clínica, Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México</p>
Keywords
Survival, Multivariate models, Proportional Hazards models
Abstract
Survival analyses are commonly used to determine the time of an event (for example, death). However, they can be used also for other clinical outcomes on the condition that these are dichotomous, for example healing time. These analyses only consider the relationship of one variable. However, Cox proportional hazards model is a multivariate analysis of the survival analysis, in which other potentially confounding covariates of the effect of the main maneuver studied, such as age, gender or disease stage, are taken into account. This analysis can include both quantitative and qualitative variables in the model. The measure of association used is called hazard ratio (HR) or relative risk ratio, which is not the same as the relative risk or odds ratio (OR). The difference is that the HR refers to the possibility that one of the groups develops the event before it is compared with the other group. The proportional hazards multivariate model of Cox is the most widely used in medicine when the phenomenon is studied in two dimensions: time and event.
Abstract 188 |
PDF (Spanish) Downloads 193
References
Kleinbaum DG, Klein M. Survival Analysis: A Self-Learning Text. New York: Springer Science Business Media, Inc; 2005.
Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 53(282):457-81.
Feinstein AR. Principles of medical statistics. New York, NY: Chapman and Hall/CRC; 2002.
Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis part II: Multivariate data analysis – an introduction to concepts and methods. Br J Cancer. 2003;89:431-6.
Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B (Methodological). 1972;34(2)187-220.
Berea-Baltierra R, Rivas-Ruiz R, Pérez-Rodríguez M, Palacios-Cruz L, Moreno J, Talavera JO. Del juicio clínico a la regresión logística múltiple. Rev Med Inst Mex Seguro Soc. 2014;52(2):192-7.