Clinical research XXI. From the clinical judgment to survival analysis

Main Article Content

Rodolfo Rivas-Ruiz
Marcela Pérez-Rodríguez
Lino Palacios-Cruz
Juan O Talavera

Keywords

Clinical evolution, Survival, Kaplan-Meier estimate, Life tables, Time

Abstract

Decision making in health care implies knowledge of the clinical course of the disease. Knowing the course allows us to estimate the likelihood of occurrence of a phenomenon at a given time or its duration. Within the statistical models that allow us to have a summary measure to estimate the time of occurrence of a phenomenon in a given population are the linear regression (the outcome variable is continuous and normally distributed —time to the occurrence of the event—), logistic regression (outcome variable is dichotomous, and it is evaluated at one single interval), and survival curves (outcome event is dichotomous, and it can be evaluated at multiple intervals). The first reference we have of this type of analysis is the work of the astronomer Edmond Halley, an English physicist and mathematician, famous for the calculation of the appearance of the comet orbit, recognized as the first periodic comet (1P/Halley’s Comet). Halley also contributed in the area of health to estimate the mortality rate for a Polish population. The survival curve allows us to estimate the probability of an event occurring at different intervals. Also, it leds us to estimate the median survival time of any phenomenon of interest (although the used term is survival, the outcome does not need to be death, it may be the occurrence of any other event).

Abstract 586 | PDF (Spanish) Downloads 305

References

Palacios-Cruz L, Pérez-Rodríguez M, Rivas-Ruiz R, Talavera JO. Investigación clínica XVIII. Del juicio clínico al modelo de regresión lineal. Rev Med Inst Mex Seguro Soc. 2013;51(6):656-61.

 

Pérez-Rodríguez M, Palacios-Cruz L, Moreno J, Rivas-Ruiz R, Talavera JO. Investigación clínica XIX. Del juicio clínico al análisis de covarianza. Rev Med Inst Mex Seguro Soc. 2014;52(1):70-5.

 

Kleinbaum D. Survival analysis: A self-learning text. Second edition. Berlin: Springer Science Business Media; 2005. 

 

Kaplan EL, Meier P. Nonparametric incomplete estimation from observations. J Am Statist Assoc. 1958; 53(282):457-481.

 

Rivas-Ruiz R, Moreno-Palacios J, Talavera JO. Investigación clínica XVI. Diferencias de medianas con la U de Mann-Whitney. Rev Med Inst Mex Seguro Soc. 2013;51(4):414-9

 

Feinstein AR. Principles of medical statistics. New York, NY: Chapman and Hall/CRC; 2002.

Lecturas recomendadas

 

Abd-ElHafeez S, Torino C, D’Arrigo G, Bolignano D, Provenzano F, Mattace-Raso F, Zoccali C, Tripepi G. An overview on standard statistical methods for assessing exposure-outcome link in survival analysis (Part II): The Kaplan-Meier analysis and the Cox regression method. Aging Clin Exp Res. 2012;24(3):203-6. 

 

Benítez-Parejo N, Rodríguez-del Águila MM, Pérez-Vicente S. Survival analysis and Cox regression. Allergol Immunopathol (Madr). 2011;39(6):362-73. 

 

Bland JM, Altman DG. Survival probabilities (the Kaplan-Meier method). BMJ. 1998;317(7172):1572.

 

Efron B. Logistic regression, survival analysis, and the Kaplan-Meier curve. J Am Stat Assoc. 1988; 83(402): 414-25.

Satagopan JM, Ben-Porat L, Berwick M, Robson M, Kutler D, Auerbach AD. A note on competing risks in survival data analysis. Br J Cancer. 2004;91(7):1229-35.

 

Xie J, Liu C. Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med. 2005;24(20):3089-110.