Aplicación de terapia génica en el tratamiento de enfermedades hematológicas: logros, aspectos económicos y éticos del tema
DOI:
https://doi.org/10.5281/zenodo.10790539Palabras clave:
Terapia Génica, Edición Genómica, Hemofilia, Anemia de FanconiResumen
El descubrimiento de la estructura del ADN y los mecanismos que regulan la expresión de los genes durante la primera mitad del siglo pasado establecieron las bases teóricas y metodológicas para el desarrollo de tecnología que permite modificar un gen o genoma. La aplicación clínica de las técnicas que modifican la expresión de un gen se denomina terapía génica (TG). Estás técnicas incluyen plataformas (virales y no virales) que acarrean sistemas de modificación genética o genes sanos hasta las células blanco. La ClinicalTrial.gov es un repositorio sobre ensayos clínicos que incluye protocolos con uso de TG. En este trabajo se realizó una revisión sistemática de los trabajos registrados en ClinicalTrial.gov sobre el uso de TG en enfermedades hematológicas. Se encontraron un total de 41 ensayos clínicos relacionados con TG, de los cuales la mayoría estaba registrada en Estados Unidos de América del Norte (56.1%). El 41.46% de los protocolos obtuvieron financiamiento privado. Del 50% de todas las patologías solo las enfermedades de origen hematológico de origen monogénico (hemofilia A, hemofilia B y la anemia de Fanconi) recibieron TG. Por otro lado, el número de protocolos clínicos registrados por país se correlacionó de forma positiva con el desarrollo económico, el desarrollo científico, con la inversión en salud per cápita y con la calidad de vida. Finalmente, aún existen controversias bioéticas, sociales, políticas y económicas, que aún deben resolverse.
Descargas
Referencias
Boström EA, Lira-Junior R. Non-Malignant Blood Disorders and Their Impact on Oral Health: an Overview. Curr Oral Healt. 2019;6(2):161-8. doi: 10.1007/s40496-019-0211-9.
Leukemia & Lymphoma Society. Facts and statics overview. Estados Unidos: Leukemia & Limphoma Society; 2023. Disponible en: https://www.lls.org/facts-and-statistics/facts-and-statistics-overview.
Sonati MF, Costa FF. The genetics of blood disorders: hereditary hemoglobinopathies. J Pediatr (Rio J). 2008;84 Suppl 4:S40-51. doi: 10.2223/JPED.1802.
Lapteva L, Purohit-Sheth T, Serabian M, et al. Clinical Development of Gene Therapies: The First Three Decades and Counting. Mol Ther Methods Clin Dev. 2020;19:387-97. doi: 10.1016/j.omtm.2020.10.004.
Kilbey BJ. Charlotte Auerbach (1899-1994). Genetics. 1995;141(1):1-5. doi: 10.1093/genetics/141.1.1.
Maguin P, Marraffini LA. From the discovery of DNA to current tools for DNA editing. J Exp Med. 2021;218(4). doi: 10.1084/jem.20201791.
Greely HT. CRISPR'd babies: human germline genome editing in the 'He Jiankui affair'. J Law Biosci. 2019;6(1):111-83. doi: 10.1093/jlb/lsz010.
Li H, Yang Y, Hong W, et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy. 2020;5(1):1. doi: 10.1038/s41392-019-0089-y.
Goswami R, Subramanian G, Silayeva L, et al. Gene Therapy Leaves a Vicious Cycle. Frontiers in Oncology. 2019;9:297. doi: 10.3389/fonc.2019.00297.
Wong CH, Li D, Wang N, et al. Estimating the Financial Impact of Gene Therapy. medRxiv. 2020:2020. doi: 10.1101/2020.10.27.20220871.
Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med. 2018;20(5):e3015. doi: 10.1002/jgm.3015.
Zhou W, Wang X. Human gene therapy: A scientometric analysis. Biomed & Pharmacother. 2021;138:111510. doi: 10.1016/j.biopha.2021.111510.
Hersh MA. Science, Technology and Values: Promoting Ethics and Social Responsibility. AI . 2014;29. doi: 10.1007/s00146-013-0473-z.
Walsh JP. Social media and moral panics: Assessing the effects of technological change on societal reaction. Int J Cult Stud. 2020;23(6):840-59. doi: 10.1177/1367877920912257.
Rothschild J. Ethical considerations of gene editing and genetic selection. J Gen Fam Med. 2020;21(3):37-47. doi: 10.1002/jgf2.321.
Social Progress Index. Global Index 2022: Results [Internet]. Social Progress Index; 2022 [citado 2023 nov 02]. Disponible en: https://www.socialprogress.org/global-index-2022-results/
International Monetary Fund. GDP, current prices. List 2023 [Internet]. IMF DataMapper; 2021 [citado 2023 nov 02]. Disponible en: https://www.imf.org/external/datamapper/NGDPD@WEO/OEMDC/ADVEC/WEOWORLD/USA/GBR/AUS/BEL/BRA/CAN/FRA/DEU/NLD/GRC/ISR/ITA/JPN/KOR/SAU/ESP/CHE/SWE/TWN/TUR/IND/ZAF/IRL.
Ortiz-Ospina E, Roser M. Global Health [Internet]. Our World in Data; 2023 [citado 2023 nov 02]. Disponible en: https://ourworldindata.org/health-meta.
Ritchie H, Mathieu E, Roser M. Research and Development. Our World in Data; 2023 [citado 2023 nov 02]. Disponible en: https://ourworldindata.org/research-and-development.
Al-Saif AM. Gene therapy of hematological disorders: current challenges. Gene Ther. 2019;26(7-8):296-307. doi: 10.1038/s41434-019-0093-4.
Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape. Signal Transd and Target Ther. 2021;6(1):53. doi: 10.1038/s41392-021-00487-6.
Chowdary P, Shapiro S, Makris M, et al. A Novel Adeno Associated Virus (AAV) Gene Therapy (FLT180a) Achieves Normal FIX Activity Levels in Severe Hemophilia B (HB) Patients (B-AMAZE Study). Res Pract Thromb Haemost. 2020;4 Suppl 1. Disponible en: https://abstracts.isth.org/abstract/a-novel-adeno-associated-virus-aav-gene-therapy-flt180a-achieves-normal-fix-activity-levels-in-severe-hemophilia-b-hb-patients-b-amaze-study/
Nathwani AC. Gene therapy for hemophilia. Hematology. 2022;2022(1):569-78. doi: 10.1182/hematology.2022000388.
Mehta P, Reddy-Reddivari AK. Hemophilia. En: Statpearls Publisghing;2023. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK551607/
López-Arroyo JL, Pérez-Zúñiga JM, Merino-Pasaye LE, et al. Consenso de Hemofilia en México. Gac Med Méx. 2021;157 Suppl 1. doi: 10.24875/gmm.m20000451.
Cornu TI, Mussolino C, Müller MC, et al. HIV Gene Therapy: An Update. Hum Gene Ther. 2021;32(1-2):52-65. doi: 10.1089/hum.2020.159.
Anurogo D, Yuli Prasetyo Budi N, et al. Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. Int J Mol Sci. 2021;22(12):6275. doi: 10.3390/ijms22126275.
Cohen JT, Chambers JD, Silver MC, et al. Health Affairs Blog [Internet]. Washington, DC: National Pharmaceurical Council. 2019 [citado 2023 nov 02]. Disponible en: https://www.healthaffairs.org/content/forefront/putting-costs-and-benefits-new-gene-therapies-into-perspective. DOI: 10.1377/forefront.20190827.553404.
Perrone M. $3.5M gene therapy for hemophilia gets FDA approval [Internet]. Estados Unidos: Associated Press; 2022 [citado 2023 nov 02]. Disponible en: https://apnews.com/article/science-technology-health-business-gene-therapy-57070989d02f8f6459b106ba0e36764a.
World Health Organization. Human genome editing: a framework for governance [Internet]. Geneva: World Health Organization; 2021. Disponible en: https://www.who.int/publications/i/item/9789240030060.
Raposo VL. The First Chinese Edited Babies: A Leap of Faith in Science. JBRA Assist Reprod. 2019;23(3):197-9. doi: 10.5935/1518-0557.20190042.
Cyranoski D. What CRISPR-baby prison sentences mean for research. Nature. 2020;577(7789):154-5. doi: 10.1038/d41586-020-00001-y.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Revista Médica del Instituto Mexicano del Seguro Social

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan sus derechos de autor y otorgan a la Revista Médica del IMSS el derecho de primera publicación. Los artículos se distribuyen bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional, que permite su difusión siempre que se reconozca al autor y la fuente original.