Respiratory immune system and consequences due to particulate matter in air pollution

Authors

  • Jessica Andrea Flood-Garibay <p>Universidad de las Am&eacute;ricas Puebla, Escuela de Ciencias, Departamento de Ciencias Qu&iacute;mico-Biol&oacute;gicas. San Andr&eacute;s Cholula, Puebla</p><p>&nbsp;</p><p>&nbsp;</p> http://orcid.org/0000-0002-0856-5458
  • Miguel Ángel Méndez-Rojas <p>Universidad de las Am&eacute;ricas Puebla, Escuela de Ciencias, Departamento de Ciencias Qu&iacute;mico-Biol&oacute;gicas. San Andr&eacute;s Cholula, Puebla</p> http://orcid.org/0000-0002-4758-3763
  • Erwin Josuan Pérez-Cortés <p>Universidad de las Am&eacute;ricas Puebla, Escuela de Ciencias, Departamento de Ciencias de la Salud. San Andr&eacute;s Cholula</p> http://orcid.org/0000-0002-7218-8175

Keywords:

Particulate Matter, Pneumonia, Nanoparticles, Lung, Pulmonary Alveoli

Abstract

The respiratory system is commonly known for being responsible for gaseous exchange. However, chronic exposure to air born pollution increases each year the number of asthma, chronic obstructive pulmonary disease (COPD), and lung cancer cases, which compels us to view the lung as a vulnerable organ due to the fact that because of its nature it enters in contact with substances present in the environment. Fortunately, the immune response mechanism acts locally in the lung in order to modulate the inflammatory response and to facilitate the clearance of inhaled pathogens, as well as volatile organic compounds (VOCs), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). Expanding our understanding of the molecular mechanisms underlying inflammation and pathology induced by airborne contaminant particles in the long term can help to develop strategies to reduce the risks of exposure to some of the most hazardous air pollutants, as well as to reduce the toxicity of nanomaterials and may also help to identify therapeutic targets to be used in the preventive treatment of susceptible groups.

Downloads

Download data is not yet available.

Author Biographies

  • Jessica Andrea Flood-Garibay, <p>Universidad de las Am&eacute;ricas Puebla, Escuela de Ciencias, Departamento de Ciencias Qu&iacute;mico-Biol&oacute;gicas. San Andr&eacute;s Cholula, Puebla</p><p>&nbsp;</p><p>&nbsp;</p>

    Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias.

    Licenciatura en Quimica.

    Maestra en Ciencias Quimico Biologicas.

    Estudiante de Doctorado.

  • Miguel Ángel Méndez-Rojas, <p>Universidad de las Am&eacute;ricas Puebla, Escuela de Ciencias, Departamento de Ciencias Qu&iacute;mico-Biol&oacute;gicas. San Andr&eacute;s Cholula, Puebla</p>

    Departamento de Ciencias Quimico Biologicas, Escuela de Ciencias, Universidad de las Américas Puebla.

    Licenciado en Química con Especialidad en FisicoQuímica

    Doctorado en Química

    Coordinador del programa de Nanotecnología e Ingeniería Molecular de la UDLAP

  • Erwin Josuan Pérez-Cortés, <p>Universidad de las Am&eacute;ricas Puebla, Escuela de Ciencias, Departamento de Ciencias de la Salud. San Andr&eacute;s Cholula</p>

    Departamento de Ciencias de la Salud, Escuela de Ciencias, Universidad de las Américas Puebla.

    Medico Cirujano

    Doctor en Ciencias Fisiologicas

    Coordinador de Investigacion Departamento de Ciencias de la Salud

    Coordinador del Posgrado de la Escuela de Ciencias de la UDLAP

References

Husain AN. The Lung. In: Kumar V, Abbas AK, Aster JC. Robbins and Cotran Pathologic Basis of Disease. 9th ed. Philadelphia: Saunders, Elsevier Inc.; 2015. pp. 669-726.

 

Merkle CJ. Cellular adaptation, injury, and death. In: Grossman S, Porth CM. Porth´s Pathophysiology Concepts of Altered Health States. 9th ed. China: Wolters Kluwer Health | Lippincott Williams & Wilkins; 2014. pp. 101-17.

 

Effros RM. Anatomy, development, and physiology of the lungs. GI Motility online. 2006; May 16. Disponible en https://www.nature.com/gimo/contents/pt1/full/gimo73.html [Consultado el 28 de julio de 2018].

 

Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat. 2017;209:78-92. doi: 10.1016/j.aanat.2016.09.008.

 

Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu Rev Biochem. 2017;86:585-608. doi: 10.1146/annurev-biochem-061516-044847.

 

Po JYT, FitzGerald JM, Carlsten C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis. Thorax. 2011;66(3):232-9. doi: 10.1136/thx.2010.147884.

 

Xia X, Zhang A, Liang S, Qi Q, Jiang L, Ye Y. The Association between Air Pollution and Population Health Risk for Respiratory Infection: A Case Study of Shenzhen, China. Int J Environ Res Public Health. 2017;14(9). pii: E950. doi: 10.3390/ijerph14090950.

 

Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci. 2017;18(2). pii: E243. doi: 10.3390/ijms18020243.

 

Li JJ, Muralikrishnan S, Ng CT, Yung LLY, Bay BH. Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood). 2010;235(9):1025-33. doi: 10.1258/ebm.2010.010021.

 

Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39.

 

Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, et al. A Work Group Report on Ultrafine Particles (AAAAI) Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol. 2016;138(2):386-6. doi: 10.1016/j.jaci.2016.02.023

 

Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015;16(1):27-35. doi: 10.1038/ni.3045.

 

Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science. 2012;337(6097):937-41. doi: 10.1126/science.1223012.

 

Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert S, Maeda Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest. 2009;119(10):2914-24. doi: 10.1172/JCI39731.

 

Bou Saab J, Losa D, Chanson M, Ruez R. Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Lett. 2014;588(8):1288-96. doi: 10.1016/j.febslet.2014.02.059.

 

Martin FJ, Prince AS. TLR2 regulates gap junction intercellular communication in airway cells. J Immunol. 2008;180(7):4986-93.

 

Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684-92. doi: 10.1038/nm.2737.

 

Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, et al. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun. 2018;10(5-6):487-501. doi: 10.1159/000487057.

 

Collin M, Bigley V, Haniffa M, Hambleton S. Human dendritic cell deficiency: the missing ID? Nat Rev Immunol. 2011;11(9):575-83. doi: 10.1038/nri3046.

 

Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36-44. doi: 10.1038/ni.3052.

 

Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81-93. doi: 10.1038/nri3600.

 

Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45-56. doi: 10.1038/ni.3049.

 

Wright JR. Immunoregulatory Functions of Surfactant Proteins. Nat Rev Immunol. 2005;5(1):58-68.

 

Perez-Gil J, Weaver TE. Pulmonary Surfactant Pathophysiology: Current Models and Open Questions. Physiology (Bethesda). 2010;25(3):132-41. doi: 10.1152/physiol.00006.2010.

 

Boraschi D, Italiania P, Palomba R, Decuzzi P, Duschlc A, Fadeeld B, et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol. 2017;34:33-51. doi: 10.1016/j.smim.2017.08.013.

 

Martinon F, Burns K, Tschopp J. The Inflammasome A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-β. Mol Cell. 2002;10(2):417-26.

 

Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674-7.

 

Minelli C, Wei I, Sagoo G, Jarvis D, Shaheen S, Burney P. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. Am J Epidemiol. 2011;173(6):603-20. doi: 10.1093/aje/kwq403.

 

 

North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol. 2009;296(6):L911-20. doi: 10.1152/ajplung.00025.2009.

 

Rosas Pérez I, Serrano J, Alfaro-Moreno E, Baumgardner D, García-Cuellar C, Martín Del Campo JM et al. Relations between PM10 composition and cell toxicity: A multivariate and graphical approach. Chemosphere. 2007;67(6):1218 28.

 

El-Ansary A, Al-Daihan S. On the Toxicity of Therapeutically Used Nanoparticles: An Overview. J Toxicol. 2009;2009:754810. doi: 10.1155/2009/754810.

 

Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies. BioMed Research International. 2013;2013:1-22.

 

Singh U, Reponen T, Cho KJ, Grinshpun SA, Adhikari A, Levin L, et al. Airborne Endotoxin and β-D-glucan in PM1 in Agricultural and Home Environments. Aerosol and Air Quality Research. 2011;11(4):376 86.

 

Colarusso C, Terlizzi M, Molino A, Pinto A, Sorrentino R. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget. 2017;8(47):81813 24.

 

Méndez-Rojas MA, Sánchez-Salas J, Santillan-Urquiza E. Toxicology of Nanomaterials-The Dawn of Nanotoxicology. In: Kharisov BI, Kharissova OV, and Ortiz-Mendez U. CRC concise encyclopedia of nanotechnology. 1st ed. Florida: CRC Press; 2016. pp. 860-70.

Published

2020-01-30

Issue

Section

Review Article