Allergies as a target of interest in the era of immunotherapy
Keywords:
Allergy and Immunology, Hypersensitivity, Drug Hypersensitivity, Food Hypersensitivity, ImmunotherapyAbstract
Exacerbated immune system reactions often trigger allergy pathologies, which include asthma, rhinitis, urticaria, food and drug allergies, insect bites, and may sometimes have fatal outcomes. In Mexico, more than 20% of open population, present allergic symptoms with notable increase in the last twenty years, especially in children. The Mexican Institute for Social Security (IMSS, according to its initials in Spanish) provides attention to around 7000 patients per year, mainly due to allergies deriving from therapeutic drugs and certain foods. Pharmacotherapy has been effective in reducing classical allergy symptoms, although treatment does not stop disease progression. In addition, the constant use of drugs represents a remarkable socioeconomic impact. Strategies based on the modification of immune responses in the course of allergic reactions through immunotherapy started more than 100 years ago, and some have provided cure to the disease. On the occasion of the Nobel Prize in Physiology or Medicine 2018, it was awarded to James P. Allison and Tasuku Honjo for their contributions in the regulation of the immune system against cancer, through a new generation of immunotherapy. In this review we analyzed current immunotherapeutic options, including its benefits, limitations and perspectives for the best clinical management of allergies.
Downloads
References
Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018;8(9):1-18. doi:10.1158/2159-8290.CD-18-0367
Pfaar O, Alvaro M, Cardona V, Hamelmann E, Mösges R, Kleine-Tebbe J. Clinical trials in allergen immunotherapy: current concepts and future needs. Allergy. 2018;73(9):1775‑83. doi:10.1111/all.13429
Larenas Linnemann DES. One hundred years of immunotherapy: review of the first landmark studies. Allergy Asthma Proc. 2012;33(2):122‑8. doi:10.2500/aap.2012.33.3515
Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S73-80. doi:10.1016/j.jaci.2009.11.017
Gomez G, Gonzalez-Espinosa C, Odom S, Baez G, Cid ME, Ryan JJ, et al. Impaired FcepsilonRI-dependent gene expression and defective eicosanoid and cytokine production as a consequence of Fyn deficiency in mast cells. J Immunol. 2005;175(11):7602-10. doi: 10.4049/jimmunol.175.11.7602
Eiseman E, Bolen JB. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature. 1992;355(6355):78-80. doi: 10.1038/355078a0
Bobrzynski T, Fux M, Vogel M, Stadler MB, Stadler BM, Miescher SM. A high-affinity natural autoantibody from human cord blood defines a physiologically relevant epitope on the FcepsilonRIalpha. J Immunol. 2005;175(10):6589-96. doi: 10.4049/jimmunol.175.10.6589
Melvin TAN, Patel AA. Pharmacotherapy for Allergic Rhinitis. Otolaryngol Clin North Am. 2011;44(3):727-39. doi:10.1016/j.otc.2011.03.010
Jutel M, Kosowska A, Smolinska S. Allergen Immunotherapy: Past, Present, and Future. Allergy Asthma Immunol Res. 2016;8(3):191‑7. doi:10.4168/aair.2016.8.3.191
Cooke RA. Serological evidence of immunity with coexisting sensitization in a type of human allergy (hay fever). J Exp Med. 1935;62(6):733-50. doi:10.1084/jem.62.6.733
James LK, Shamji MH, Walker SM, Wilson DR, Wachholz PA, Francis JN, et al. Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies. J Allergy Clin Immunol. 2011;127(2):509‑16. doi:10.1016/j.jaci.2010.12.1080
Niederberger V, Horak F, Vrtala S, Spitzauer S, Krauth MT, Valent P, et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci U S A. 2004;101(Suppl 2):14677-82. doi:10.1073/pnas.0404735101
Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto De Lafaille MA. Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest. 2005;115(7):1923-33. doi:10.1172/JCI24487
Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall JA, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103 + DCs induces Foxp3 + regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J Exp Med. 2007;204(8):1757-64. doi:10.1084/jem.20070590
Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204(8):1775‑85. doi:10.1084/jem.20070602
Chambers SJ, Bertelli E, Winterbone MS, Regoli M, Man AL, Nicoletti C. Adoptive transfer of dendritic cells from allergic mice induces specific immunoglobulin E antibody in naïve recipients in absence of antigen challenge without altering the T helper 1/T helper 2 balance. Immunology. 2004;112(1):72‑9. doi:10.1111/j.1365-2567.2004.01846.x
Bieber T, Kraft S, Geiger E, Wollenberg A, Koch S, Novak N. EcεRI expressing dendritic cells: The missing link in the pathophysiology of atopic dermatitis? J Dermatol. 2000;27(11):698-9. doi:10.1111/j.1346-8138.2000.tb02261.x
Jahnsen FL, Moloney ED, Hogan T, Upham JW, Burke CM, Holt PG. Rapid dendritic cell recruitment to the bronchial mucosa of patients with atopic asthma in response to local allergen challenge. Thorax. 2001;56(11):823‑6.doi:10.1136/thorax.56.11.823
Carrard A, Rizzuti D, Sokollik C. Update on food allergy. Allergy Eur J Allergy Clin Immunol. 2015;70(12):1511-20. doi:10.1111/all.12780
Escobar A, Aguirre A, Guzmán MA, González R, Catalán D, Acuña-Castillo C, et al. Tolerogenic dendritic cells derived from donors with natural rubber latex allergy modulate allergen-specific T-cell responses and IgE production. PLoS One. 2014;9(1):e85930. doi:10.1371/journal.pone.0085930
Pochard P, Vickery B, Berin MC, Grishin A, Sampson HA, Caplan M, et al. Targeting Toll-like receptors on dendritic cells modifies the T(H)2 response to peanut allergens in vitro. J Allergy Clin Immunol. 2010;126(1):92-7.e5. doi:10.1016/j.jaci.2010.04.003
Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15(4):410-6. doi:10.1038/nm.1946
Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol. 2012;30:733-58. doi:10.1146/annurev‑immunol-020711-075043
Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, et al. Lung-resident tissue macrophages generate Foxp3 + regulatory T cells and promote airway tolerance. J Exp Med. 2013;210(4):775-88. doi:10.1084/jem.20121849
Palomares O, Martín-Fontecha M, Lauener R, Traidl-Hoffmann C, Cavkaytar O, Akdis M, et al. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun. 2014;15(8):511‑20. doi:10.1038/gene.2014.45
Lin W, Truong N, Grossman WJ, Haribhai D, Williams CB, Wang J, et al. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin Immunol. 2005;116(5):1106-15. doi:10.1016/j.jaci.2005.08.046
Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting Edge: Direct Suppression of B Cells by CD4+CD25+ Regulatory T Cells. J Immunol. 2005;175(7):4180-3. doi:10.4049/jimmunol.175.7.4180
Read S, Malmström V, Powrie F. Cytotoxic T Lymphocyte–Associated Antigen 4 Plays an Essential Role in the Function of Cd25 + Cd4 + Regulatory Cells That Control Intestinal Inflammation. J Exp Med. 2000;192(2):295-302. doi:10.1084/jem.192.2.295
Massoud AH, Charbonnier LM, Lopez D, Pellegrini M, Phipatanakul W, Chatila TA. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells. Nat Med. 2016;22(9):1013-22. doi:10.1038/nm.4147
Halim TY, Steer CA, Mathä L, Gold MJ, Martinez-Gonzalez I, McNagny KM, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014;40(3):425‑35. doi:10.1016/j.immuni.2014.01.011
Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014;111(36):13145-50. doi:10.1073/pnas.1412008111
Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y. The Requirement of Intestinal Bacterial Flora for the Development of an IgE Production System Fully Susceptible to Oral Tolerance Induction. J Immunol. 1997;159(4):1739‑45.
Bashir MEH, Louie S, Shi HN, Nagler-Anderson C. Toll-Like Receptor 4 Signaling by Intestinal Microbes Influences Susceptibility to Food Allergy. J Immunol. 2004;172(11):6978-87. doi:10.4049/j immunol.172.11.6978
Pauli G, Malling HJ. Allergen-specific immunotherapy with recombinant allergens. Curr Top Microbiol Immunol. 2011;352:43‑54. doi:10.1007/82_2011_125
Radulovic S, Jacobson MR, Durham SR, Nouri-Aria KT. Grass pollen immunotherapy induces Foxp3-expressing CD4+CD25+ cells in the nasal mucosa. J Allergy Clin Immunol. 2008;121(6):1467-72, 1472.e1. doi:10.1016/j.jaci.2008.03.013
Klemenson DA, Kelly JV, Winkler T, Kone MT, Musch G, Vidal Melo MF, et al. The effect of omalizumab on ventilation and perfusion in adults with allergic asthma. Am J Nucl Med Mol Imaging. 2013; 3(4): 350‑60.
Downloads
Published
Issue
Section
License
Authors retain their copyright and grant the Revista Médica del IMSS the right of first publication. Articles are distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows sharing as long as the author and the original source are properly credited.