Mammary epithelial cells from women synthetize omega-3 and 6 fatty acids

Main Article Content

Imelda Cecilia Zarzoza-Mendoza http://orcid.org/0009-0008-4564-5044
Elizabeth Sosa-Castillo http://orcid.org/0000-0002-4904-988X
Mariela Bernabe-García http://orcid.org/0000-0001-9970-2077
Cristian Emmanuel Luna-Guzmán http://orcid.org/0009-0001-1333-8970
Maricela Morales-Marzana http://orcid.org/0009-0000-3310-3565
Jorge Maldonado-Hernández http://orcid.org/0000-0002-7592-7025
Maricela Rodriguez-Cruz http://orcid.org/0000-0001-8496-4023

Keywords

Human, Fatty Acid Desaturases, Fatty Acid Elongases, Fatty Acids, Omega-3, Gene Expression, Milk

Abstract

Background: The metabolic regulation for the synthesis of human milk (HM) long-chain polyunsaturated fatty acids (LC-PUFAs) ω3 and ω6 is poorly known; it is due to the limitations in obtaining breast tissue.


Objective: To determine whether the epithelial cells of human breast tissue (ECHBT) express the enzymes that synthesize LC-PUFAs, and to analyze the expression changes in the different types of HM and its correlation with the percentage of LC-PUFAs.


Methods: In colostrum, transition and mature HM of 6 women, the fatty acid composition was analyzed by gas chromatography and the mRNA expression of the desaturases Ä5D, Ä6D and elongase Elovl-5 in the ECHBT was analyzed by qPCR.


Results: tissue express the mRNA of Ä5D, Ä6D and Elovl-5 for the synthesis of LC-PUFAs, this expression increases in mature milk with respect to colostrum. The percentage of linoleic and alpha-linolenic acid is the similar in the three types of milk, while that of arachidonic acid and docosahexaenoic acid decreased (8% and 14% respectively) in mature milk compared to colostrum. The mRNA of Ä5D, Ä6D correlated with the percentage of arachidonic acid, that of Ä6D and Elovl-5 correlated with the percentage of docosahexaenoic acid (DHA).


Conclusions: The ECHBT express the enzymes that synthesize LC-PUFAs and their expression increases in mature milk, to meet the demand of the newborn. This demonstrates the role of the mammary gland in the synthesis of LC-PUFAs ω3, such as eicosapentaenoic acid and DHA, essential for neuronal and retinal development of the newborn.

Abstract 9 | PDF (Spanish) Downloads 6 XML (Spanish) Downloads 1 PubMed Central (Spanish) Downloads 0

References

McManaman JL, Martin-Carli JF, Monks J. Human milk lipids: an overview. Human Milk. 2021:91-102. doi: 10.1016/B978-0-12-815350-5.00004-8.

Ojo-Okunola A, Cacciatore S, Nicol MP, et al. The determinants of the human milk metabolome and its role in infant health. Metabolites. 2020;10(2):77. doi: 10.3390/metabo10020077.

Thum C, Wall C, Day L, et al. Changes in human milk fat globule composition throughout lactation: A review. Front Nutr. 2022;9. doi: 10.3389/fnut.2022.835856.

Bobiński R, Bobińska J. Fatty acids of human milk–a review. Int J Vitam Nutr Res. 2022;92(3-4):280-291. doi: 10.1024/0300-9831/a000651.

Giuffrida F, Fleith M, Goyer A, et al. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr. 2022;61:2167-2182. doi: 10.1007/s00394-021-02788-6.

Rodríguez-Cruz M, Tovar AR, Palacios-González B, et al. Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: role of Delta5 and Delta6 desaturases, SREBP-1, PPARalpha, and PGC-1. J Lipid Res. 2006;47(3):553-560. doi: 10.1194/jlr.M500407-JLR200.

Rodríguez-Cruz M, Sánchez R, Sánchez A., et al. Participation of mammary gland in long-chain polyunsaturated fatty acid synthesis during pregnancy and lactation in rats. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;1811(4):284-293. doi: 10.1016/j.bbalip.2011.01.007.

Muthusamy D. Milk fat globular membrane: composition, structure, isolation, technological significance and health benefits. Current issues and advances in the dairy industry. IntechOpen; 2023. doi: 10.5772/intechopen.106926.

Maningat PD, Sen P, Sunehag AL, et al. Regulation of gene expression in human mammary epithelium: effect of breast pumping. J Endocrinol. 2007;195(3):503-511. doi: 10.1677/JOE-07-0394.

Shah R, Sabir S, Alhawaj AF. Physiology, breast milk. Treasure Island (FL): StatPearls Publishing; 2022.

Zhang Y, Zhang X, Mi L, et al. Comparative proteomic analysis of proteins in breast milk during different lactation periods. Nutrients. 2022;14(17):3648. doi: 10.3390/nu14173648.

Wu F, Zhi X, Xu R, et al. Exploration of microRNA profiles in human colostrum. Ann Transl Med. 2020;8(18):1170-1170. doi: 10.21037/atm-20-5709.

Munblit D, Treneva M, Peroni D, et al. Colostrum and mature human milk of women from London, Moscow, and Verona: Determinants of immune composition. Nutrients. 2016;8(11):695. doi: 10.3390/nu8110695.

Badillo-Suárez PA, Rodríguez-Cruz M, Villa-Morales J, et al.  Influence of maternal body fat on levels of insulin, insulin-like growth factor-1, and obestatin. J Hum Lact. 2022;38(4):619-632. doi: 10.1177/08903344221112946.

Rodríguez-Cruz M, Atilano-Miguel S, Barbosa-Cortes L, et al. Evidence of muscle loss delay and improvement of hyperinsulinemia and insulin resistance in Duchenne muscular dystrophy supplemented with omega-3 fatty acids: A randomized study. Clin Nutr. 2019:38(5):2087-2097. doi: 10.1016/j.clnu.2018.10.017.

Lucas MO, Miyazaki M, Bond LM, et al. Fatty acid desaturation and elongation in mammals. Biochem Lip, Lipoproteins and Membranes. 2021;201:12. doi: 10.1016/B978-0-12-824048-9.00014-6.

Sadovnikova, A., Wysolmerski, J. J., & Hovey, R. C. The onset and maintenance of human lactation and its endocrine regulation. In Maternal-Fetal and Neonatal Endocrinology. 2020. pp. 189-20. Academic Press. doi: 10.1016/B978-0-12-814823-5.00014-3.

Contreras GA, Strieder-Barboza C, De Koster J. Symposium review: modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. J Dairy Sci. 2018;101(3):2737-2752. doi: 10.3168/jds.2017-13340.

Rodríguez-Cruz M, Sánchez R, Bernabe-Garcia M, et. al. Effect of dietary levels of corn oil on maternal arachidonic acid synthesis and fatty acid composition in lactating rats. Nutrition. 2009;25(2):209-15. doi: 10.1016/j.nut.2008.07.022.

Li Y, Zhao J, Dong Y, et al. Sp1 is involved in vertebrate LC-PUFA biosynthesis by upregulating the expression of liver desaturase and elongase genes. International J Mol Sciences. 2019;20(20):5066. doi: 10.3390/ijms20205066.

Farhadian M, Rafat SA, Panahi B, et al. Weighted gene co-expression network analysis identifies modules and functionally enriched pathways in the lactation process. Scientific Reports. 2021;11(1):2367. doi: 10.1038/s41598-021-81888-z.

Zhang J, Zhao A, Lai S, et. al. Longitudinal changes in the concentration of major human milk proteins in the first six months of lactation and their effects on infant growth. Nutrients. 2021;13(5):1476. doi: 10.3390/nu13051476.

Xi M, Liang D, Yan Y, et al. Functional proteins in breast milk and their correlation with the development of the infant gut microbiota: a study of mother-infant pairs. Front Microbiol. 2023;14;1239501. doi:10.3389/fmicb.2023.1239501.

Manguy J, Shields DC. Implications of kappa-casein evolutionary diversity for the self-assembly and aggregation of casein micelles. Royal Society Open Science. 2019;6(10):190939. doi: 10.1098/rsos.190939.